Construction of graded covariant $GL(m/n)$ modules using tableaux
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 151-170.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Irreducible covariant tensor modules for the Lie supergroups $GL( m/ n)$ and the Lie superalgebras $gl( m/ n)$ and $sl( m/ n)$ are obtained through the use of Young tableaux techniques. The starting point is the graded permutation action, first introduced by Dondi and Jarvis, on $V ^$ otimesl . The isomorphism between this group of actions and the symmetric group S $\_{l}$ enables the graded generalization of the Young symmetrizers, and hence of the column relations and Garnir relations, to be made. Consequently, corresponding to each partition of l an irreducible GL( m/ n) module may be obtained as a submodule of V ^ otimesl . A basis for the module labeled by the partition $lambda$ is provided by $GL( m/ n)$-standard tableaux of shape $lambda$ defined by Berele and Regev. The reduction of an arbitrary tableau to standard form is accomplished through the use of graded column relations and graded Garnir relations. The standardization procedure is algorithmic and allows matrix representations of the Lie superalgebras $gl( m/ n)$ and $sl( m/ n)$ to be constructed explicitly over the field of rational numbers. All the various steps of the standardization algorithm are exemplified, as well as the explicit construction of matrices representing particular elements of $gl( m/ n)$ and $sl( m/ n)$.
Keywords: Young tableaux, Lie superalgebras, modules
@article{JAC_1992__1_2_a2,
     author = {King, R.C. and Welsh, T.A.},
     title = {Construction of graded covariant $GL(m/n)$ modules using tableaux},
     journal = {Journal of Algebraic Combinatorics},
     pages = {151--170},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a2/}
}
TY  - JOUR
AU  - King, R.C.
AU  - Welsh, T.A.
TI  - Construction of graded covariant $GL(m/n)$ modules using tableaux
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 151
EP  - 170
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a2/
LA  - en
ID  - JAC_1992__1_2_a2
ER  - 
%0 Journal Article
%A King, R.C.
%A Welsh, T.A.
%T Construction of graded covariant $GL(m/n)$ modules using tableaux
%J Journal of Algebraic Combinatorics
%D 1992
%P 151-170
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a2/
%G en
%F JAC_1992__1_2_a2
King, R.C.; Welsh, T.A. Construction of graded covariant $GL(m/n)$ modules using tableaux. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 151-170. http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a2/