Completeness of normal rational curves
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 197-202.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The completeness of normal rational curves, considered as $( q + 1)$-arcs in $PG( n, q)$, is investigated. Previous results of Storme and Thas are improved by using a result by Kovács. This solves the problem completely for large prime numbers $q$ and odd nonsquare prime powers $q = p ^{2 h+1}$ with $p$ prime, , where $p _{0}( h)$ is an odd prime number which depends on $h$.
Keywords: $k$-arcs, normal rational curves, M.D.S. codes
@article{JAC_1992__1_2_a0,
     author = {Storme, L.},
     title = {Completeness of normal rational curves},
     journal = {Journal of Algebraic Combinatorics},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a0/}
}
TY  - JOUR
AU  - Storme, L.
TI  - Completeness of normal rational curves
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 197
EP  - 202
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a0/
LA  - en
ID  - JAC_1992__1_2_a0
ER  - 
%0 Journal Article
%A Storme, L.
%T Completeness of normal rational curves
%J Journal of Algebraic Combinatorics
%D 1992
%P 197-202
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a0/
%G en
%F JAC_1992__1_2_a0
Storme, L. Completeness of normal rational curves. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 197-202. http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a0/