Triple multiplicities for $s\ell (r+1)$ and the spectrum of the exterior algebra of the adjoint representation
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 7-22.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A new combinatorial expression is given for the dimension of the space of invariants in the tensor product of three irreducible finite dimensional $s$l(r + 1)-modules (we call this dimension the triple multiplicity). This expression exhibits a lot of symmetries that are not clear from the classical expression given by the Littlewood-Richardson rule. In our approach the triple multiplicity is given as the number of integral points of the section of a certain $ldquo$universal $rdquo$ polyhedral convex cone by a plane determined by three highest weights. This allows us to study triple multiplicities using ideas from linear programming. As an application of this method, we prove a conjecture of B. Kostant that describes all irreducible constituents of the exterior algebra of the adjoint $s$l(r + 1)-module.
Keywords: tensor product multiplicities, systems of linear inequalities
@article{JAC_1992__1_1_a4,
     author = {Berenstein, A.D. and Zelevinsky, A.V.},
     title = {Triple multiplicities for $s\ell (r+1)$ and the spectrum of the exterior algebra of the adjoint representation},
     journal = {Journal of Algebraic Combinatorics},
     pages = {7--22},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a4/}
}
TY  - JOUR
AU  - Berenstein, A.D.
AU  - Zelevinsky, A.V.
TI  - Triple multiplicities for $s\ell (r+1)$ and the spectrum of the exterior algebra of the adjoint representation
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 7
EP  - 22
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a4/
LA  - en
ID  - JAC_1992__1_1_a4
ER  - 
%0 Journal Article
%A Berenstein, A.D.
%A Zelevinsky, A.V.
%T Triple multiplicities for $s\ell (r+1)$ and the spectrum of the exterior algebra of the adjoint representation
%J Journal of Algebraic Combinatorics
%D 1992
%P 7-22
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a4/
%G en
%F JAC_1992__1_1_a4
Berenstein, A.D.; Zelevinsky, A.V. Triple multiplicities for $s\ell (r+1)$ and the spectrum of the exterior algebra of the adjoint representation. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a4/