On Schur's $Q$-functions and the primitive idempotents of a commutative Hecke algebra
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 71-95.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $B _{n}$ denote the centralizer of a fixed-point free involution in the symmetric group $S _{2 n }$. Each of the four one-dimensional representations of $B _{n}$ induces a multiplicity-free representation of $S _{2 n }$, and thus the corresponding Hecke algebra is commutative in each case. We prove that in two of the cases, the primitive idempotents can be obtained from the power-sum expansion of Schur's $Q$-functions, from which follows the surprising corollary that the character tables of these two Hecke algebras are, aside from scalar multiples, the same as the nontrivial part of the character table of the spin representations of $S _{n}$.
Keywords: Gelfand pairs, Hecke algebras, symmetric functions, zonal polynomials
@article{JAC_1992__1_1_a1,
     author = {Stembridge, John R.},
     title = {On {Schur's} $Q$-functions and the primitive idempotents of a commutative {Hecke} algebra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {71--95},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a1/}
}
TY  - JOUR
AU  - Stembridge, John R.
TI  - On Schur's $Q$-functions and the primitive idempotents of a commutative Hecke algebra
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 71
EP  - 95
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a1/
LA  - en
ID  - JAC_1992__1_1_a1
ER  - 
%0 Journal Article
%A Stembridge, John R.
%T On Schur's $Q$-functions and the primitive idempotents of a commutative Hecke algebra
%J Journal of Algebraic Combinatorics
%D 1992
%P 71-95
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a1/
%G en
%F JAC_1992__1_1_a1
Stembridge, John R. On Schur's $Q$-functions and the primitive idempotents of a commutative Hecke algebra. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 71-95. http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a1/