A combinatorial characterization of Hermitian curves
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 97-102.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A unital $U$ with parameter $q$ is a $2 - ( q ^{3} + 1, q + 1, 1)$ design. If a point set $U$ in $P$G$(2, q ^{2})$ together with its $( q + 1)$-secants forms a unital, then $U$ is called a Hermitian arc. Through each point $p$ of a Hermitian arc $H$ there is exactly one line $L$ having with $H$ only the point $p$ in common; this line $L$ is called the tangent of $H$ at $p$. For any prime power $q$, the absolute points and nonabsolute lines of a unitary polarity of $P$G$(2, q ^{2})$ form a unital that is called the classical unital. The points of a classical unital are the points of a Hermitian curve in $P$G$(2, q ^{2})$. Let $H$ be a Hermitian arc in the projective plane $P$G$(2, q ^{2})$. If tangents of $H$ at collinear points of $H$ are concurrent, then $H$ is a Hermitian curve. This result proves a well known conjecture on Hermitian arcs.
Keywords: Hermitian curve, unital, projective plane
@article{JAC_1992__1_1_a0,
     author = {Thas, J.A.},
     title = {A combinatorial characterization of {Hermitian} curves},
     journal = {Journal of Algebraic Combinatorics},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a0/}
}
TY  - JOUR
AU  - Thas, J.A.
TI  - A combinatorial characterization of Hermitian curves
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 97
EP  - 102
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a0/
LA  - en
ID  - JAC_1992__1_1_a0
ER  - 
%0 Journal Article
%A Thas, J.A.
%T A combinatorial characterization of Hermitian curves
%J Journal of Algebraic Combinatorics
%D 1992
%P 97-102
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a0/
%G en
%F JAC_1992__1_1_a0
Thas, J.A. A combinatorial characterization of Hermitian curves. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 1, pp. 97-102. http://geodesic.mathdoc.fr/item/JAC_1992__1_1_a0/