Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2025_27_2_a6, author = {I. A. Pshenokova and M. R. Kiyasov}, title = {Models and methods of deep learning in medical image recognition and classification tasks}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {103--112}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a6/} }
TY - JOUR AU - I. A. Pshenokova AU - M. R. Kiyasov TI - Models and methods of deep learning in medical image recognition and classification tasks JO - News of the Kabardin-Balkar scientific center of RAS PY - 2025 SP - 103 EP - 112 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a6/ LA - ru ID - IZKAB_2025_27_2_a6 ER -
%0 Journal Article %A I. A. Pshenokova %A M. R. Kiyasov %T Models and methods of deep learning in medical image recognition and classification tasks %J News of the Kabardin-Balkar scientific center of RAS %D 2025 %P 103-112 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a6/ %G ru %F IZKAB_2025_27_2_a6
I. A. Pshenokova; M. R. Kiyasov. Models and methods of deep learning in medical image recognition and classification tasks. News of the Kabardin-Balkar scientific center of RAS, Tome 27 (2025) no. 2, pp. 103-112. http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a6/
[1] C. M. Bishop, Pattern recognition and machine learning (Information Science and Statistics), Springer, New York, 2007
[2] Z. Li et al., “A survey of convolutional neural networks: analysis, applications, and prospects”, IEEE transactions on neural networks and learning systems, 33:12 (2021), 6999–7019 | DOI
[3] M. Byra et al, “Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion”, Medical physics, 46:2 (2019), 746–755 | DOI
[4] Y. Horiuchi et al., “Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging”, Digestive diseases and sciences, 65 (2020), 1355–1363 | DOI
[5] J. Wang et al., “Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton”, Journal of Bionic Engineering, 19:5 (2022), 1359–1373 | DOI
[6] D. Bhandari, S. Paul, A. Narayan, “Deep neural networks for multimodal data fusion and affect recognition”, International Journal of Artificial Intelligence and Soft Computing, 7:2 (2020), 130–145 | DOI
[7] A. Srivastava, A. Singh, A. K. Tiwari, “An efficient hybrid approach for the prediction of epilepsy using CNN with LSTM”, International Journal of Artificial Intelligence and Soft Computing, 7:3 (2022), 179–193 | DOI
[8] H. A. Khan et al., “Brain tumor classification in MRI image using convolutional neural network”, Mathematical Biosciences and Engineering, 17:5 (2021), 6203–6216 | DOI
[9] E. H. Houssein et al., “Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images”, Journal of Computational Design and Engineering, 9:2 (2022), 343–363 | DOI
[10] A. S. Raskopina, V. V. Bozhenko, T. M. Tatarnikova, “Using deep learning in diagnosing pneumonia from X-ray images”, News of higher educational institutions. Instrument engineering, 67:4 (2024), 315–320 (In Russian) | DOI
[11] C. Wan et al., “Research on classification algorithm of cerebral small vessel disease based on convolutional neural network”, Journal of Intelligent Fuzzy Systems, 44:2 (2023), 3107–3114
[12] M. Ashtari-Majlan, A. Seifi, M. M. Dehshibi, “A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer's disease using structural MRI images”, IEEE Journal of Biomedical and Health Informatics, 26:8 (2022), 3918–3926 | DOI
[13] F. Ekong et al., “Bayesian depth-wise convolutional neural network design for brain tumor MRI classification”, Diagnostics, 12:7 (2022), 1657 | DOI
[14] I. D. Apostolopoulos, S. Aznaouridis, M. Tzani, “An attention-based deep convolutional neural network for brain tumor and disorder classification and grading in magnetic resonance imaging”, Information, 14:3 (2023), 174 | DOI
[15] Y. Shi et al., “Residual convolutional neural network-based stroke classification with electrical impedance tomography”, IEEE Transactions on Instrumentation and Measurement, 71 (2022), 1–11 | DOI
[16] E. Yu. Shchetinin, L. A. Sevastyanov, “On deep learning transfer methods in biomedical image classification problems”, Computer Science and Its Applications, 15:4 (2021), 59–64 (In Russian) | DOI
[17] N. A. Shchukina, “Neural network models in the problem of classification of medical images”, Modeling, Optimization and Information Technology, 9:4 (35) (2021) (In Russian) | DOI
[18] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014 | DOI
[19] A. Khan et al., “A survey of the recent architectures of deep convolutional neural networks”, Artificial intelligence review, 53 (2020), 5455–5516
[20] Brain tumor MRI dataset, (accessed 10.03.2025) https://www.kaggle.com/datasets/