Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2025_27_2_a0, author = {A. F. Konstantinov and L. P. Dyakonova}, title = {Building a machine learning model}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {11--22}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a0/} }
A. F. Konstantinov; L. P. Dyakonova. Building a machine learning model. News of the Kabardin-Balkar scientific center of RAS, Tome 27 (2025) no. 2, pp. 11-22. http://geodesic.mathdoc.fr/item/IZKAB_2025_27_2_a0/
[1] A. Mashrur, W. Luo, N. A. Zaidi, A. Robles-Kelly, “Machine Learning for Financial Risk Management: A Survey”, IEEE Access, 8 (2020), 203203–203223 | DOI
[2] T. Awosika, R. M. Shukla, B. Pranggono, “Transparency and Privacy: The Role of Explainable AI and Federated Learning in Financial Fraud Detection”, IEEE Access, 12 (2024), 64551–64560 | DOI
[3] B. McMahan, E. Moore, D. Ramage et al., “Communication-efficient learning of deep networks from decentralized data”, Proceedings of the 20 th International Conference on Artificial Intelligence and Statistics, PMLR, 54, 2017, 1273–1282 | DOI
[4] A. A. Ali, A. M. Khedr, M. El-Bannany, S. Kanakkayil, “A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique”, Applied Sciences, 13:4 (2023), 2272 | DOI
[5] K. He, Q. Yang, L. Ji et al., “Financial Time Series Forecasting with the Deep Learning Ensemble Model”, Mathematics, 11:4 (2023), 1054 | DOI
[6] L. Prokhorenkova, G. Gusev, A. Vorobev et al., “CatBoost: unbiased boosting with categorical features”, NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, 6639–6649 | DOI
[7] D. Micci-Barreca, “A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems”, ACM SIGKDD Explorations Newsletter, 3:1, 27–32 | DOI
[8] A. V. Dorogush, V. Ershov, A. Gulin, “CatBoost: gradient boosting with categorical features support”, Workshop on ML Systems at NIPS, 2017 | DOI
[9] L. Breiman, “Bagging predictors”, Machine Learning, 24:2 (1996), 123–140 | DOI
[10] Official website Catboost. Common parameters (Tochka dostupa: data obrascheniya: 10 yanvarya 2025) https://catboost.ai/en/docs
[11] L. Shapley, Notes on the n-person game, v. II, The value of an n-person game, 1951
[12] Official website SHAP library. (data obrascheniya: 10 yanvarya 2025) https://shap.readthedocs.io/en/latest/example
[13] W. Brier Glenn, “Verification of forecasts expressed in terms of probability”, Monthly Weather Review, 78:1 (1950), 1-3 | 2.0.CO class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[14] T. Akiba, S. Sano, T. Yanase et al., “Optuna: A Next-generation Hyperparameter Optimization Framework”, KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, 2623–2631 | DOI