Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_6_a9, author = {M. A. Abazokov and K. Ch. Bzhikhatlov}, title = {Intelligent system to analyse distributed geophysical data for a network of test ranges with multiple landscapes}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {129--138}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a9/} }
TY - JOUR AU - M. A. Abazokov AU - K. Ch. Bzhikhatlov TI - Intelligent system to analyse distributed geophysical data for a network of test ranges with multiple landscapes JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 129 EP - 138 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a9/ LA - ru ID - IZKAB_2024_26_6_a9 ER -
%0 Journal Article %A M. A. Abazokov %A K. Ch. Bzhikhatlov %T Intelligent system to analyse distributed geophysical data for a network of test ranges with multiple landscapes %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 129-138 %V 26 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a9/ %G ru %F IZKAB_2024_26_6_a9
M. A. Abazokov; K. Ch. Bzhikhatlov. Intelligent system to analyse distributed geophysical data for a network of test ranges with multiple landscapes. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 129-138. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a9/
[1] N. A. Korgin, R. V. Meshcheryakov, “Concept of the project for the creation of a distributed network of testing grounds for testing scenarios for the use of heterogeneous groups of electric vehicles in difficult climatic and landscape conditions: current condition and development prospects”, XIV Russian Conference on Management Problems, 2024, 1247–1251 (In Russian) https://vspu2024.ipu.ru/node/17868
[2] A. M. Ksalov, K. Ch. Bzhikhatlov, I. A. Pshenokova, A. U. Zammoev, “Development of a transport subsystem for autonomous robots for plant protection system”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 2 (106), 31–40 (In Russian) | DOI
[3] J. Tu, “Application of wireless sensor network model based on big data ecosystem in intelligent health monitoring system”, Journal of Function Spaces, 2022 (2022), 1–10 | DOI | MR
[4] Y. Zhang, W. Huang, “Design of intelligent diagnosis system for teaching quality based on wireless sensor network and data mining”, Eurasip Journal on Wireless Communications and Networking, 2021:1 (2021) | DOI
[5] F. LI, M. Valero, Y. Cheng et al., “Distributed sensor networks based shallow subsurface imaging and infrastructure monitoring”, IEEE Transactions on Signal and Information Processing over Networks, 6 (2020), 241–250 | DOI | MR
[6] X. Ge, Q. Han, X. Zhang et al., “Distributed event-triggered estimation over sensor networks: A survey”, IEEE Transactions on Cybernetics, 50:3 (2020), 1306–1320 | DOI
[7] C. Hou, Q. Zhao, T. Basar, “Optimization of web service-based data-collection system with smart sensor nodes for balance between network traffic and sensing accuracy”, IEEE Transactions on Automation Science and Engineering, 18:4 (2021), 2022–2034 | DOI
[8] C. Lin, G. Han, X. Qi et al., “Energy-optimal data collection for unmanned aerial vehicle aided industrial wireless sensor network-based agricultural monitoring system: A clustering compressed sampling approach”, IEEE Transactions on Industrial Informatics, 17:6 (2021), 4411–4420 | DOI
[9] G. K. Ijemaru, L. Ang, K. P. Seng, “Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges”, International Journal of Distributed Sensor Networks, 18:3 (2022), 155014772110677 | DOI
[10] K. P. Seng, L. Ang, E. Ngharamike, “Artificial intelligence internet of things: A new paradigm of distributed sensor networks”, International Journal of Distributed Sensor Networks, 18:3 (2022), 155014772110628 | DOI
[11] Z. V. Nagoev, I. A. Pshenokova, O. V. Nagoeva, Z. A. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI
[12] Z. V. Nagoev, K. Ch. Bzhikhatlov, I. A. Pshenokova, A. A. Unagasov, “Algorithms and software for simulation of intelligent systems of autonomous robots based on multi-agent neurocognitive architectures”, Interactive Collaborative Robotics. Lecture Notes in Computer Science, 14898 (2024), Springer, Cham | DOI