Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_6_a7, author = {M. A. Bagov}, title = {Mathematical modeling and computer design for water distribution system}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {98--114}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a7/} }
TY - JOUR AU - M. A. Bagov TI - Mathematical modeling and computer design for water distribution system JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 98 EP - 114 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a7/ LA - ru ID - IZKAB_2024_26_6_a7 ER -
M. A. Bagov. Mathematical modeling and computer design for water distribution system. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 98-114. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a7/
[1] E. N. Gilbert, G. O. Pollack, “Steiner minimal trees”, Cybernetic Collection. New Series, 1971, no. 8, 19–49 (In Russian)
[2] E. N. Gordeev, O. G. Tarastsov, “Steiner Problem. Review”, Discrete Mathematics, 5:2 (1993), 3–28 (In Russian) | Zbl
[3] E. N. Gilbert, “Minimal Cost Communication Networks”, Bell System technological Journal, 1967, no. 9, 48–50
[4] W. M. Boyce, “An improved program for the full Steiner tree problem”, ACM Trans. J Math. Software, 3 (1977), 359–385 | DOI | MR | Zbl
[5] W. M. Boyce, J. B. Seery, “STEINER 72: An improved version of the minimal network problem”, Rech. Rep. No. 35. Comp. Sci. Res., CTR. Bell. Lab.,, Murray Hill, N. Y
[6] M. A. Bagov, “Method of computer design of branched hydraulic pipeline networks with an optimal number of Steiner points”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 6 (116), 55–64 (In Russian) | DOI
[7] N. N. Abramov, M. M. Pospelova, M. A. Somov et al., Calculation of water supply networks, Stroyizdat, Moscow, 1983, 278 pp. (In Russian)
[8] “H. Tui”, Concave programming under linear constraints, 159:1 (1964), 32–35 (In Russian) | Zbl
[9] V. A. Trubin, Properties and methods for solving problems of optimal network synthesis, Znanie, Kyiv, 1982, 23 pp. (In Russian)
[10] V. S. Mikhalevich, V. A. Trubin, N. Z. Shor, Optimization problems of production and transport planning, Nauka, Moscow, 1986, 260 pp. (In Russian)
[11] A. P. Merenkov, E. V. Sennova, S. V. Sumarokov et al., Mathematical modeling and optimization of heat, water, oil and gas supply systems, Nauka, Novosibirsk, 1992, 407 pp. (In Russian)
[12] V. P. Bulatov, L. I. Kassinskaya, “Some methods for minimizing a concave function on a convex polyhedron”, Optimization methods and their applications, 1987, 151–172, SEI SB RAS USSR, Irkutsk (In Russian) | MR
[13] M. B. Abazokov, M. A. Bagov, V. Ch. Kudaev, “Computer design of large pipeline networks of high optimality rank”, Adyghe International Scientific Journal, 22:4 (2022), 39–56 (In Russian) | DOI
[14] E. R. Stavrovsky, R. A. Trunov, “New problems and computer programs for optimizing the configuration and parameters of regional gas distribution networks during their design”, Collection of scientific papers «Pipeline systems of energy. Methods of mathematical modeling and optimization», Nauka, Novosibirsk, 2007, 258 pp. (In Russian)