Modeling algorithm to avoid collisions in robotic collaborative systems
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 67-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In modern collaborative and industrial robotics, the issue of safety of human-robot interaction is one of the main problems. Due to the high mass and high-speed operating modes, a collision between the manipulator and the operator often leads to injury to a person. The aim of the work is to develop and test an algorithm to avoid collision for robots in a dynamic environment. The simulation was carried out in the Webots simulator using the virtual force method. The algorithm has shown high efficiency and reliability, maintaining a safe distance between a robot and a person. The developed system to avoid collision is suitable for industrial environments.
Keywords: collision prevention, safety, collaborative robot
Mots-clés : Webots
@article{IZKAB_2024_26_6_a5,
     author = {M. A. Shereuzhev and D. I. Arabadzhiev and I. V. Semyannikov},
     title = {Modeling algorithm to avoid collisions in robotic collaborative systems},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a5/}
}
TY  - JOUR
AU  - M. A. Shereuzhev
AU  - D. I. Arabadzhiev
AU  - I. V. Semyannikov
TI  - Modeling algorithm to avoid collisions in robotic collaborative systems
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 67
EP  - 81
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a5/
LA  - ru
ID  - IZKAB_2024_26_6_a5
ER  - 
%0 Journal Article
%A M. A. Shereuzhev
%A D. I. Arabadzhiev
%A I. V. Semyannikov
%T Modeling algorithm to avoid collisions in robotic collaborative systems
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 67-81
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a5/
%G ru
%F IZKAB_2024_26_6_a5
M. A. Shereuzhev; D. I. Arabadzhiev; I. V. Semyannikov. Modeling algorithm to avoid collisions in robotic collaborative systems. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 67-81. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a5/

[1] S. Haddadin, E. Croft, “Physical human-robot interaction”, Handbook of Robotics, 2016, 1835–1874, Springer | DOI

[2] V. Villani, F. Pini, F. Leali, C. Secchi, “Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications”, Mechatronics, 55 (2018), 248–266 | DOI

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots”, The International Journal of Robotics Research, 5(1) (1986), 90–98 | DOI

[4] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Force control, London, Springer, 2009, 363–405 pp.

[5] E. Rohmer, S. P.N. Singh, M. Freese, “V-REP: A versatile and scalable robot simulation framework”, 2013 IEEE/RSJ international conference on intelligent robots and systems, 2013, 1321–1326 | DOI

[6] M. Reinstein, M. Hoffmann, “Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information”, IEEE Transactions on Robotics, 29(2) (2012), 563–571 | DOI

[7] O. Michel, B. Rohrer, “Webots: professional mobile robot simulation”, International Journal of Advanced Robotic Systems, 5(3) (2009), 39–42 | DOI

[8] F. Dellaert, D. Fox, W. Burgard, S. Thrun, “Monte Carlo localization for mobile robots”, Proceedings 1999 IEEE international conference on robotics and automation, 1999, 1322–1328

[9] Y. Jiang, C. Yang, Z. Ju, J. Liu, “Obstacle avoidance of a redundant robot using virtual force field and null space projection”, Intelligent Robotics and Applications: XII International Conference, ICIRA, 2019, 728–739, Springer | DOI

[10] C. Y. Kim, Y. H. Kim, W. S. Ra, “Modified 1D virtual force field approach to moving obstacle avoidance for autonomous ground vehicles”, Journal of Electrical Engineering Technology, 14 (2019), 1367–1374 | DOI

[11] Q. Xu, T. Zhang, K. Zhou et al., “Active collision Aaoidance for robotic Aam based on artificial potential field and deep reinforcement learning”, Applied Sciences, 14(11) (2024), 4936 | DOI