Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_6_a10, author = {L. A. Lyutikova}, title = {Application of machine learning method to analyse incomplete data}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {139--145}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a10/} }
TY - JOUR AU - L. A. Lyutikova TI - Application of machine learning method to analyse incomplete data JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 139 EP - 145 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a10/ LA - ru ID - IZKAB_2024_26_6_a10 ER -
L. A. Lyutikova. Application of machine learning method to analyse incomplete data. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 139-145. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a10/
[1] N. V. Kondrat'eva, “Preliminary assessment of the maximum volume of solid mudflow deposits using mathematical statistics methods for the Central Caucasus”, Modern problems of science and education, 2014, no. 4, 50–56 (In Russian) http://www.science-education.ru/118-13897
[2] N. V. Kondrat'eva, A. Kh. Adzhiev, M. Yu. Bekkiev et al., Mudflow hazard cadastre of the South of the European part of Russia, Feoriya, M., Nal'chik, 2015, 148 pp. (In Russian)
[3] C. F. Caiafa, J. S. C. Jordi Sole-Casals, P. Marti-Puig et al., “Decomposition methods for machine learning with small, incomplete or noisy datasets”, Applied Sciences, 10:23 (2020), 8481 | DOI
[4] P. Kainthura, N. Sharma, “Hybrid machine learning approach for landslide prediction, Uttarakhand, India”, Scientific reports, 12:1 (2022), 20101 | DOI
[5] F. A. A. Hadi, L. M. Sidek, G. H. A. Salih et al., “Machine learning techniques for flood forecasting”, Journal of Hydroinformatics, 26:4 (2024), 779–799 | DOI
[6] L. Lombardo, P. M. Mai, “Presenting logistic regression-based landslide susceptibility results”, Engineering Geology, 244 (2018), 14–24 | DOI
[7] O. Rahmati, A. Kornejady, M. Samadi et al., “PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches”, The Science of the total environment, 664 (2019), 296–311 | DOI
[8] E. V. Kyul', A. K. Ezaov, L. I. Kankulova, “Theoretical foundations of geoecological monitoring of mountain ecosystems”, Sustainable development of mountain areas, 11:1 (2019), 36–43 (In Russian) | DOI
[9] L. A. Lyutikova, “Methods for Improving the Efficiency of Neural Network Decision Making”, Advances in Automation IV. RusAutoCon 2022. Lecture Notes in Electrical Engineering, 986 (2023), 294–303 | DOI
[10] N. A. Radeev, “Predicting Avalanche Hazard Using Machine Learning Methods”, Bulletin of NSU. Series: Information technology, 19:2 (2021), 92–101 (In Russian) | DOI
[11] Yu. I. Zhuravlyov, “On an algebraic approach to solving recognition or classification problems”, Problems of cybernetics, 33 (1978), 5–68 (In Russian) | Zbl
[12] P. Flakh, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, DMK Press, Moscow, 2015 (In Russian)