Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_5_a9, author = {R. A. Zhilov}, title = {Construction of {Kohonen} self-organizing map {(SOM)} for prediction of mudflow types}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {129--137}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a9/} }
TY - JOUR AU - R. A. Zhilov TI - Construction of Kohonen self-organizing map (SOM) for prediction of mudflow types JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 129 EP - 137 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a9/ LA - ru ID - IZKAB_2024_26_5_a9 ER -
R. A. Zhilov. Construction of Kohonen self-organizing map (SOM) for prediction of mudflow types. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 129-137. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a9/
[1] V. V. Khvorostov, I. I. Khvorostov, “Extraordinary and ultra-seismic flows in the territory of the Greater Caucasus”, Proceedings of the international conference “Sustainable Development of Mountain Territories”, 2004, 605 (In Russian)
[2] N. V. Kondratyeva, A. Kh. Adzhiev, M. Yu. Bekkiev et al., Inventory of mudflow danger in the south of the European part of Russia, Pechatnuy dvor, Nalchik, 2015, 148 pp. (In Russian)
[3] N. V. Kondratieva, “Preliminary assessment of the maximum volume of solid mudflow deposits using mathematical statistics methods for the Central Caucasus”, Modern problems of science and education, 2014, no. 4, 50–56 (In Russian)
[4] T. Kohonen, Self-Organizing Maps (Third Extended Edition), New York, 2001, 501 pp. | MR
[5] R. A. Zhilov, “Application of neural networks in data clustering”, News of the Kabardino Balkarian Scientific Center of RAS, 2021, no. 1 (99), 15–19 (In Russian) | DOI
[6] N. A. Radeev, “Prediction of avalanche danger using machine learning methods”, NSU Bulletin Information Technologies, 19:2 (2021), 92–101, Series (In Russian) | DOI
[7] P. Flakh, Machine learning: the science and art of building algorithms that extract knowledge from data, DMK Press, Moscow, 2015, 400 pp. (In Russian)