Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 107-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the study is to develop a methodology for creating hybrids of economically useful plants with a given set of phenotypic properties based on the use of universal artificial intelligence methods for managing federated simulation models of vegetation. The main objective of this work is to analyze the computational complexity of the main algorithms for the functioning and training of neurocognitive systems for managing federated simulation models of plant vegetation using computers of various types. The paper presents the results of estimating the execution time of the dispatching cycle in a federated system for imitation modeling of plant phenogenetic dynamics on a sequential and parallel computer.
Keywords: universal artificial intelligence, multi-agent systems, neurocognitive control, plant breeding, gene expression, computational complexity analysis, federated algorithms
@article{IZKAB_2024_26_5_a8,
     author = {M. A. Abazokov and M. I. Anchekov and K. Ch. Bzhikhatlov and Zh. H. Kurashev and Z. V. Nagoev and O. V. Nagoeva and A.A. Unagasov and A.A. Khamov},
     title = {Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/}
}
TY  - JOUR
AU  - M. A. Abazokov
AU  - M. I. Anchekov
AU  - K. Ch. Bzhikhatlov
AU  - Zh. H. Kurashev
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - A.A. Unagasov
AU  - A.A. Khamov
TI  - Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 107
EP  - 128
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/
LA  - ru
ID  - IZKAB_2024_26_5_a8
ER  - 
%0 Journal Article
%A M. A. Abazokov
%A M. I. Anchekov
%A K. Ch. Bzhikhatlov
%A Zh. H. Kurashev
%A Z. V. Nagoev
%A O. V. Nagoeva
%A A.A. Unagasov
%A A.A. Khamov
%T Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 107-128
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/
%G ru
%F IZKAB_2024_26_5_a8
M. A. Abazokov; M. I. Anchekov; K. Ch. Bzhikhatlov; Zh. H. Kurashev; Z. V. Nagoev; O. V. Nagoeva; A.A. Unagasov; A.A. Khamov. Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 107-128. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/

[1] A. A. Davin, T. Tricou, E. Tannier, “Zombi: a phylogenetic simulator of trees, genomes and sequences that accounts for dead linages”, Bioinformatics, 36:4 (2020), 1286–1288 | DOI

[2] https://class-cloud.ru/technology/simulation

[3] N. V. Mikhailova, “Lattice simulation models of population dynamics of herbaceous plants of different life forms”, PhD. dissertation. biol. sciences, 03.00.16, 2008 (In Russian)

[4] V. L. Badenko, A. G. Topag, S. A. Medvedev, E. T. Zakharova, “Models of the production process of agricultural plants for the analysis of the elements of some farming systems”, Taurida Herald of the Agrarian Sciences, 2021, no. 1 (25), 8–27 (In Russian) | DOI

[5] A. S. Komarov, “Simulation models of nonlinear dynamics of plant communities”, abstract dis. doctor of biology sciences, 03.00.16, 2004 (In Russian)

[6] https://cran.r-project.org/web/packages/AlphaSimR/AlphaSimR.pdf

[7] https://surveillance.cancer.gov/genetic-simulation-resources/packages

[8] Z. V. Nagoev, M. I. Anchekov, Z. I. Bogotova et al., “Collaborative selection system based on a consortium of heterogeneous intelligent agents”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 25–37 (In Russian) | DOI

[9] Z. V. Nagoev, M. I. Anchekov, K. Ch. Bzhikhatlov et al., “Onto-episociophylogenetic development of general artificial intelligence systems based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 6 (110), 61–75 (In Russian)

[10] Z. V. Nagoev, M. I. Anchekov, Zh. Kh. Kurashev, A. A. Khamov, “Neurocognitive learning algorithm for a multi-agent system for evolutionary modeling of gene expression based on plant PCR analysis data”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 6 (116), 179–192 (In Russian) | DOI

[11] Z. V. Nagoev, K. Ch. Bzhikhatlov, O. Z. Zagazezheva, “Neurocognitive methods and algorithms for federated learning of intelligent integrated information and control systems in a real communication environment”, Bulletin of the Southern Federal University. Technical sciences, 2024, no. 1 (237), 111–121 (In Russian) | DOI

[12] Z. V. Nagoev, Intellectics or Thinking in Living and Artificial Systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 235 pp. (In Russian)