Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 107-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the study is to develop a methodology for creating hybrids of economically useful plants with a given set of phenotypic properties based on the use of universal artificial intelligence methods for managing federated simulation models of vegetation. The main objective of this work is to analyze the computational complexity of the main algorithms for the functioning and training of neurocognitive systems for managing federated simulation models of plant vegetation using computers of various types. The paper presents the results of estimating the execution time of the dispatching cycle in a federated system for imitation modeling of plant phenogenetic dynamics on a sequential and parallel computer.
Keywords: universal artificial intelligence, multi-agent systems, neurocognitive control, plant breeding, gene expression, computational complexity analysis, federated algorithms
@article{IZKAB_2024_26_5_a8,
     author = {M. A. Abazokov and M. I. Anchekov and K. Ch. Bzhikhatlov and Zh. H. Kurashev and Z. V. Nagoev and O. V. Nagoeva and A.A. Unagasov and A.A. Khamov},
     title = {Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/}
}
TY  - JOUR
AU  - M. A. Abazokov
AU  - M. I. Anchekov
AU  - K. Ch. Bzhikhatlov
AU  - Zh. H. Kurashev
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - A.A. Unagasov
AU  - A.A. Khamov
TI  - Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 107
EP  - 128
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/
LA  - ru
ID  - IZKAB_2024_26_5_a8
ER  - 
%0 Journal Article
%A M. A. Abazokov
%A M. I. Anchekov
%A K. Ch. Bzhikhatlov
%A Zh. H. Kurashev
%A Z. V. Nagoev
%A O. V. Nagoeva
%A A.A. Unagasov
%A A.A. Khamov
%T Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 107-128
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/
%G ru
%F IZKAB_2024_26_5_a8
M. A. Abazokov; M. I. Anchekov; K. Ch. Bzhikhatlov; Zh. H. Kurashev; Z. V. Nagoev; O. V. Nagoeva; A.A. Unagasov; A.A. Khamov. Analysis of computational complexity of federated algorithms for neurocognitive control of imitation phenogenetic models of plants. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 107-128. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a8/