Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_5_a4, author = {A.A. Aigumov and I. A. Pshenokova}, title = {Overview of methods for modeling complex}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {64--72}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a4/} }
TY - JOUR AU - A.A. Aigumov AU - I. A. Pshenokova TI - Overview of methods for modeling complex JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 64 EP - 72 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a4/ LA - ru ID - IZKAB_2024_26_5_a4 ER -
A.A. Aigumov; I. A. Pshenokova. Overview of methods for modeling complex. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 64-72. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a4/
[1] A. K. Gain, Md. S. Hossain, D. Benson, G. D. Baldassarre et al., “Social-ecological system approaches for water resources management”, International journal of sustainable development world ecology, 28:2 (2021), 109–124 | DOI
[2] M. Lippe, M. Bithell, N. Gotts et al., “Using agent-based modelling to simulate social ecological systems across scales”, GeoInformatica, 23:2 (2019), 269–298 | DOI | MR
[3] S. Elsawah, T. Filatova, A. J. Jakeman et al., “Eight grand challenges in socio-environmental systems modeling”, Socio-Environmental Systems Modelling, 2 (2020), 16226 | DOI
[4] M. Lloret-Climent, J. A. Nescolarde-Selva, H. Mora-Mora et al., “Modeling complex social systems: A new network point of view in labour markets”, IEEE Access, 8 (2020), 92110 | DOI
[5] S. Kumar, H. Banerji, “Bayesian network modeling for economic-socio-cultural sustainability of neighborhood-level urban communities: Reflections from Kolkata, an Indian megacity”, Sustainable cities and society, 78 (2022), 103632 | DOI
[6] K. J. Adams, Ch. A.J. Macleod, M. J. Metzger et al., “Developing a Bayesian network model for understanding river catchment resilience under future change scenarios”, Hydrology and earth system sciences, 27:11 (2023), 2205–2225 | DOI
[7] F. Taillandier, P. D. Maiolo, P. Taillandier et al., “An agent-based model to simulate inhabitants' behavior during a flood event”, International journal of disaster risk reduction, 64 (2021), 102503 | DOI
[8] K. V. Orlov, A. M. Zhuzbayev, K. B. Mekenbayeva et al., “Review article on dynamic stochastic general equilibrium models (DSGE)”, Review on DSGE models. Economic Review (National Bank of Kazakhstan), 2020, no. 4, 4–40 (In Russian)
[9] M. Zellner, D. Massey, A. Rozhkov, J. T. Murphy, “Exploring the barriers to and potential for sustainable transitions in urban-rural systems through participatory causal loop diagramming of the food-energy-water nexus”, Land, 12 (2023), 551 | DOI
[10] S. Russell, P. Norvig, Artificial Intelligence. A Modern Approach, 2nd edition, Vilyams, Moscow, 2006, 1408 pp. (In Russian)
[11] V. B. Tarasov, From multi-agent systems to intelligent organizations: philosophy, psychology, informatics, Editorial URSS, Moscow, 2002, 352 pp. (In Russian)
[12] M. Wooldridge, An introduction to multiagent systems second edition, Wiley, 2009, 484 pp.
[13] Multiagent Systems: A Modern approach to distributed artificial intelligence, eds. G. Weiss, The MIT Press, 1999, 643 pp.
[14] Y. Shoham, K. Leyton-Brown, Multiagent systems: algorithmic, game theoretic, and logical foundations, Cambridge University Press, 2008, 504 pp.
[15] V. R. Lesser, L. D. Erman, “Distributed interpretation: a model and experiment”, IEEE Trans. Computers, 29(12) (1980), 1144–1163 | DOI
[16] C. Xewitt, “Viewing control structures as patterns of message passing”, Artificial Intelligence, 8:3 (1977), 323–364 | DOI
[17] D. Lenat, “BEINGS: Knowledge as interacting experts”, Proc. of the 1975 IJCAI Conference, 1975, 126–133
[18] R. G. Smith, “The contract net protocol: high level communication and control in a distributed problem solver”, IEEE Transactions on Computers, 29:12 (1980), 1104–1113 | DOI
[19] P. Mathieu, J. M. Corchado, A. Gonzalez-Briones, F. De la Prieta, “Advancements in the practical applications of agents, multi-agent systems and simulating complex systems”, Systems, 11 (2023), 525 | DOI
[20] R. Ramazanov, “Agent-based modeling in the study and forecasting of socio-economic systems and processes”, Economics and Mathematical Methods, 57:1 (2021), 19–32 (In Russian) | DOI
[21] A. Brugiere, D. Nguyen-Ngoc, A. Drogoul, “Handling multiple levels in agent-based models of complex socio-environmental systems: A comprehensive review”, Frontiers in Applied Mathematics and Statistics, 8 (2022), 1020353 | DOI
[22] A. Guzman Rincon, R. L. Carrillo Barbosa, N. Segovia-Garcia, D. R. Africano Franco, “Disinformation in social networks and bots: Simulated scenarios of Its spread from system dynamics”, Systems, 10 (2022), 34 | DOI
[23] Y. Ye, R. Zhang, Y. Zhao et al., “A novel public opinion polarization model based on BA network”, Systems, 10:2 (2022), 46 | DOI
[24] A. S. Akopov, “Modeling and optimization of strategies for making individual decisions in multi-agent socio-economic systems with the use of machine learning”, Business Informatics, 17:2 (2023), 7–19 | DOI
[25] I. T. Koponen, “Agent-based modeling of consensus group formation with complex webs of beliefs”, Systems, 10 (2022), 212 | DOI
[26] G. L. Beklaryan, “Simulation modeling of multi-agent regional socio-economic systems: methods and examples”, Bulletin of the Central Economics and Mathematics Institute of the Russian Academy of Sciences, 6:4 (2023) (In Russian) | DOI
[27] D. A. Alfer'ev et al., “Modeling of socio-economic processes agent systems”, Understanding the digital transformation of socio-economic-technological systems: dedicated to the 120th anniversary of economic education at Peter the Great St. Petersburg Polytechnic University, 2024, 123–149, Springer Nature Switzerland, Cham
[28] A. Giunta, G. Giunta, D. Marino et al., “Market behavior and evolution of wealth distribution: a simulation model based on artificial agents”, Mathematical and computational applications, 26:1 (2021), 12 | DOI | MR
[29] K. Dwarakanath, S. Vyetrenko, P. Tavallali, T. Balch, “ABIDES-Economist: Agent-based simulation of economic systems with learning agents”, arXiv preprint arXiv:2402, 09563 (2024)
[30] R. Colasanti, A. MacLachlan, E. Silverman, M. Mccann, “Using agent-based models to address non-communicable diseases: a review of models and their application to policy”, The Lancet, 400 (2022), S33 | DOI
[31] J. Boyd, R. Wilson, C. Elsenbroich et al., “Agent-based modelling of health inequalities following the complexity turn in public health: a systematic review”, International journal of environmental research and public health, 19:24 (2022), 16807 | DOI
[32] V. L. Makarov, A. R. Bakhtizin, E. A. Rossoshanskaya et al., “Problems of standardizing agent-based model description and possible ways to solve them”, Herald of the Russian Academy of Sciences, 93:4 (2023), 239–248 | DOI
[33] M. Steinbacher, M. Raddant, F. Karimi et al., “Advances in the agent-based modeling of economic and social behavior”, SN Business Economics, 1:7 (2021), 99 | DOI
[34] C. Giupponi, A. G. Ausseil, S. Balbi et al., “Integrated modelling of social-ecological systems for climate change adaptation”, Socio-Environmental Systems Modelling, 3 (2022) | DOI
[35] I. A. Pshenokova, “Simulation modeling of enveloping intelligence systems based on self organizing multi-agent recursive cognitive architecture”, News of the Kabardino-Balkarian Scientific Center of RAS. 2018, no. 3 (83), 21–27, XYKTWH, EDN (In Russian)
[36] Z. V. Nagoev, O. V. Nagoeva, Justification of symbols and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik:, 2022, 150 pp. (In Russian)