Modeling artificial whistlers in PyСharm
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work proposed an algorithm for modeling an artificial whistler signal in Python in the PyCharm environment. The algorithm is based on physical and mathematical models of whistler propagation. The proposed algorithm can be used to model signal characteristics, duration, maximum and minimum frequency, and sampling frequency. The algorithm implements the ability to construct the amplitude characteristic of the signal, as well as construct its spectrogram. The model of the artificial whistler signal can be used to solve the problem of whistler recognition in real time.
Keywords: whistler, mathematical model, frequency, signal model, Python, PyCharm
Mots-clés : dispersion coefficient, spectrogram
@article{IZKAB_2024_26_5_a3,
     author = {L. S. Marchenko and R. I. Parovik},
     title = {Modeling artificial whistlers in {Py{\CYRS}harm}},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a3/}
}
TY  - JOUR
AU  - L. S. Marchenko
AU  - R. I. Parovik
TI  - Modeling artificial whistlers in PyСharm
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 53
EP  - 63
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a3/
LA  - ru
ID  - IZKAB_2024_26_5_a3
ER  - 
%0 Journal Article
%A L. S. Marchenko
%A R. I. Parovik
%T Modeling artificial whistlers in PyСharm
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 53-63
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a3/
%G ru
%F IZKAB_2024_26_5_a3
L. S. Marchenko; R. I. Parovik. Modeling artificial whistlers in PyСharm. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 53-63. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a3/

[1] L. R. O. Storey, “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113–141

[2] B. N. Gershman, Yu. S. Korobkov, “On the theory of propagation of whistling atmospherics”, Izvestiya Vuzov. Radiofizika, 1:2 (1958), 51–58 (In Russian)

[3] B. N. Gershman, V. A. Ugarov, “Propagation and generation of low-frequency electromagnetic waves in the upper atmosphere”, Uspekhi Fizicheskikh Nauk, 72:2 (1960), 235–271 (In Russian) | DOI

[4] J. Lichtenberger, C. Ferencz, L. Bodnar et al., “Automatic whistler detector and analyzer system: Automatic whistler detector”, Geophys. Res., 113 (2008) | DOI

[5] D. Koronczay, J. Lichtenberger, M. A. Clilverd et al., “The source regions of whistlers”, Journal of Geophysical Research: Space-Physics, 124 (2019), 5082–5096 | DOI

[6] W. Li, X. C. Shen, J. D. Menietti et al., “Global distribution of whistler mode waves in Jovian inner magnetosphere”, Geophysical Research Letters, 47:15 (2020) | DOI

[7] P. J. Morris, A. Bohdan, M. S. Weidl et al., Pre-acceleration in the electron foreshock. II. oblique whistler waves, v. 944, The Astrophysical Journal, 2023, 12 pp. | DOI

[8] V. S. Sonwalkar, A. Reddy, “Specularly reflected whistler: A low-latitude channel to couple lightning energy to the magnetosphere”, Science Advances, 10:33. (2024), eado2657 | DOI

[9] N. V. Cherneva, G. M. Vodinchar, V. P. Sivokon et al., “Correlation analysis of fluxes of whistling atmospherics and lightning discharges”, Vestnik KRAUNC. Fiziko-Matematiceskie Nauki, 7:2 (2013), 59–67 (In Russian) | DOI

[10] V. P. Sivokon, V. V. Bogdanov, G. I. Druzhin et al., “Whistler modulation”, Geomagnetizm i Aeronomiya, 54:6 (2014), 851–851 (In Russian) | DOI

[11] E. A. Malysh, “Algorithm for automatic recognition of whistling atmospherics in real time”, Vestnik KRAUNC. Fiziko-Matematiceskie Nauki, 2015, no. 2 (11), 82–87 (In Russian) | DOI

[12] G. N. Kichigin, “Structure of nonlinear whistlers moving through plasma at an angle to the magnetic field”, Solar-Terrestrial Physics, 4:1 (2018), 28–32 (In Russian) | DOI | DOI

[13] E. I. Malkin, E. A. Kazakov, D. V. Sannikov et al., “Statistical relationship between whistlers and sprites according to AWDANET and WWLLN”, Vestnik KRAUNC. Fiziko-Matematiceskie Nauki, 41:4 (2022), 178–190 (In Russian) | DOI

[14] A. P. Aksenov, Differential equations, in 2 parts, v. I part, Yurait, Moscow, 2021, 241 pp. (In Russian)

[15] Bruce M. Van Horn II, Q. Nguyen, Hands-on application development with PyCharm: Build applications like a Pro with the ultimate Python development tool, Packt Publishing Ltd., Birmingham. UK, 2023

[16] Z. A. Shaw, Learn Python the hard way. Addison-Wesley Professional, 2024, 352 pp.