Multi-agent neurocognitive model of a control system for the coordinated behavior of an autonomous agents’ collective
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 138-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of the research is to develop a decentralized system for controlling the coordinated behavior of a team of autonomous agents based on a multi-agent neurocognitive architecture. The task of developing a decentralized control system is solved based on the self-organization of multi-agent neurocognitive architectures of autonomous agents as part of a single cognitive architecture and the formation of a common mission graph. The vertices of the graph will be complex states that represent the union of the states of all agents in the group, and the arcs will be the sets of actions of the group members leading from one complex state to another. The presented model will allow to create decentralized, flexible and scalable control systems for a group of intelligent agents to solve complex problems and can be used in robotics.
Keywords: control system, multi-agent systems, decentralized systems
Mots-clés : intelligent agent
@article{IZKAB_2024_26_5_a10,
     author = {I. A. Pshenokova and S. A. Kankulov and B. A. Atalikov and A. Z. Enes},
     title = {Multi-agent neurocognitive model of a control system for the coordinated behavior of an autonomous agents{\textquoteright} collective},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {138--146},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a10/}
}
TY  - JOUR
AU  - I. A. Pshenokova
AU  - S. A. Kankulov
AU  - B. A. Atalikov
AU  - A. Z. Enes
TI  - Multi-agent neurocognitive model of a control system for the coordinated behavior of an autonomous agents’ collective
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 138
EP  - 146
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a10/
LA  - ru
ID  - IZKAB_2024_26_5_a10
ER  - 
%0 Journal Article
%A I. A. Pshenokova
%A S. A. Kankulov
%A B. A. Atalikov
%A A. Z. Enes
%T Multi-agent neurocognitive model of a control system for the coordinated behavior of an autonomous agents’ collective
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 138-146
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a10/
%G ru
%F IZKAB_2024_26_5_a10
I. A. Pshenokova; S. A. Kankulov; B. A. Atalikov; A. Z. Enes. Multi-agent neurocognitive model of a control system for the coordinated behavior of an autonomous agents’ collective. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 138-146. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a10/

[1] Q. Li, F. Gama, A. Ribeiro, A. Prorok, “Graph neural networks for decentralized multi-robot path planning”, IEEE/RSJ international conference on intelligent robots and systems (IROS), 2020, 11785–11792 | DOI

[2] V. Desaraju, J. How, “Decentralized path planning for multi-agent teams with complex constraints”, Autonomous Robots, 2012, no. 32 (4), 385–403 | DOI

[3] A. Patwardhan, R. Murai, A. J. Davison, “Distributing collaborative multi-robot planning with gaussian belief propagation”, IEEE Robotics and Automation Letters, 2023, no. 8 (2), 552–559 | DOI

[4] “Conflict-based search for optimal multi agent pathfinding”, Artificial Intelligence, 219 (2012), 40–66 | DOI

[5] R. Gulati, F. Wohlgezogen, P. Zhelyazkov, “The two facets of collaboration: Cooperation and coordination in strategic alliances”, Academy of Management Annals, 2012, no. 6 (1), 531–583 | DOI

[6] F. Lumineau, W. Wang, O. Schilke, “Blockchain governance: A new way of organizing collaborations?”, Organization Science, 2021, no. 32 (2), 500–521 | DOI

[7] G. Fragapane, R. de Koster, F. Sgarbossa, J. Strandhagen, “Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda”, European Journal of Operational Research, 2021, 405–426 | DOI | MR | Zbl

[8] J. Turner, G. Meng, G. Schaefer et al., “Distributed task rescheduling with time constraints for the optimization of total task allocations in a multirobot system”, IEEE transactions on cybernetics, 48(9) (2017), 2583–2597 | DOI

[9] M. E. Mkiramweni et al., “A survey of game theory in unmanned aerial vehicles communications”, IEEE Communications Surveys Tutorials, 21(4) (2019), 3386–3416 | DOI

[10] X. Zhu, F. Vanegas, F. Gonzalez, “Decentralised multi-UAV cooperative searching multi target in cluttered and GPS-denied environments”, IEEE Aerospace Conference (AERO), 2022, 1–10

[11] I. Tkach, T. Blackwell, “On the Optimization of systems using AI metaheuristics and evolutionary algorithms”, International Conference on Production Research, 2021, 253–271, Springer International Publishing, Cham

[12] M. O. Keskin, F. Canturk, C. Eran et al., “Decentralized multi-agent path finding framework and strategies based on automated negotiation”, Auton Agent Multi-Agent Syst, 38:10 (2024) | DOI

[13] I. A. Pshenokova, A. Z. Apshev, “Energy exchange model among agneurons as part of multi agent neurocognitive architecture”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 5 (115), 32–40 (In Russian) | DOI

[14] Z. Nagoev, I. Pshenokova, O. Nagoeva, S. Kankulov, “Situational analysis model in an intelligent system based on multi-agent neurocognitive architectures”, Journal of Physics: Conference Series, 2131 (2021) | DOI

[15] I. Pshenokova, K. Bzhikhatlov, S. Kankulov et al., “Simulation model of the neurocognitive system controlling an intellectual agent displaying exploratory behavior in the real world”, Proceedings of the 14th Annual Meeting of the BICA Society, BICA 2023. Studies in Computational Intelligence (SCI), 1130 | DOI