Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_5_a0, author = {K. Ch. Bzhikhatlov and A. D. Kravchenko}, title = {The concept of an automated control system}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {13--28}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a0/} }
TY - JOUR AU - K. Ch. Bzhikhatlov AU - A. D. Kravchenko TI - The concept of an automated control system JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 13 EP - 28 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a0/ LA - ru ID - IZKAB_2024_26_5_a0 ER -
K. Ch. Bzhikhatlov; A. D. Kravchenko. The concept of an automated control system. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 5, pp. 13-28. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_5_a0/
[1] The new high-tech strategy innovations for Germany https://ec.europa.eu/futurium/en
[2] G. Erboz, “Managerial trends in the development of enterprises in globalization era”, How to define Industry 4.0: Main pillars of Industry 4.0, 2017, 761–767, Slovakia
[3] R. Badarinath, V. V. Prabhu, “Advances in Internet of Things (IoT) in manufacturing”, Advances in production management systems. The Path to intelligent, collaborative and sustainable manufacturing, IFIP Advances in Information and Communication Technology, v. 513, eds. Lodding, H., Riedel, R., Thoben, KD., von Cieminski, G., Kiritsis, D.https://ec.europa.eu/futurium/en, 2017, 111–118 pp. | DOI
[4] H. Elhoone, T. Zhang, M. Anwar, S. Desai, “Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0”, International Journal of Production Research, 58:9 (2019), 2841–2861 | DOI
[5] J. M. Fordal, P. Schjolberg, H. Helgetun et al., “Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0”, Advances in Manufacturing, 11:2 (2023), 248–263 | DOI
[6] A. I.M. Schwebig, R. Tutsch, “Compilation of training datasets for use of convolutional neural networks supporting automatic inspection processes in industry 4.0 based electronic manufacturing”, Journal of Sensors and Sensor Systems, 9:1 (2020), 167–178 | DOI
[7] D. O. Sanz, C. Q. Gomez Munoz, F. P. Garcia Marquez, “Convolutional neural networks as a quality control in 4.0 industry for screws and nuts”, Lecture Notes in Networks and Systems, 2022, 13–29 | DOI
[8] T. Mujber, T. Szecsi, M. Hashmi, “Virtual reality applications in manufacturing process simulation”, Journal of Materials Processing Technology, 155-156 (2004), 1834–1838 | DOI
[9] N. Gramegna, E. D. Corte, S. Poles, “Manufacturing process simulation for product design chain optimization”, Materials and Manufacturing Processes, 26:3 (2011), 527–533 | DOI
[10] A. Smirnov, N. Shilov, M. Shchekotov, “Ontology-Based modelling of state machines for production robots in smart manufacturing systems”, International Journal of Embedded and Real-Time Communication Systems, 11:2 (2020), 76–91 | DOI | MR
[11] S. B. Yeom, E. S. Ha, M. S. Kim et al., “Application of the discrete element method for manufacturing process simulation in the pharmaceutical industry”, Pharmaceutics, 11:8 (2019), 414 | DOI
[12] K. Ch. Bzhikhatlov, I. A. Pshenokova, “Intelligent spraying system of autonomous mobile agricultural robot”, Smart Innovation, Systems and Technologies, 2023, 269–278 | DOI
[13] K. Bzhikhatlov, A. Zammoev, L. Kokova, I. Pshenokova, “Autonomous robot for monitoring ground archaeological sites”, Izvestiya SFedU Engineering sciences, 1 (2023), 100–109 | DOI
[14] Z. Nagoev, I. Pshenokova, O. Nagoeva et al., “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI
[15] M. I. Anchekov, A. Z. Apshev, K. Ch. Bzhikhatlov et al., “Formal genome model of a general artificial intelligence agent based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 5 (115), 11–24 | DOI