Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_3_a4, author = {K. Ch. Bzhikhatlov and A. D. Mutlu and L.S. Mangusheva}, title = {Development of a student employment forecasting service}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {55--67}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a4/} }
TY - JOUR AU - K. Ch. Bzhikhatlov AU - A. D. Mutlu AU - L.S. Mangusheva TI - Development of a student employment forecasting service JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 55 EP - 67 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a4/ LA - ru ID - IZKAB_2024_26_3_a4 ER -
%0 Journal Article %A K. Ch. Bzhikhatlov %A A. D. Mutlu %A L.S. Mangusheva %T Development of a student employment forecasting service %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 55-67 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a4/ %G ru %F IZKAB_2024_26_3_a4
K. Ch. Bzhikhatlov; A. D. Mutlu; L.S. Mangusheva. Development of a student employment forecasting service. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 3, pp. 55-67. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a4/
[1] Yu. S. Polozhentseva, O. V. Sogacheva, A. A. Yaroshenko, “Forecasting the dynamics of the gross regional product using neural networks”, Natural-humanitarian studies, 2021, no. 4 (36), 235–240 (In Russian) | DOI
[2] E. N. Churaev, A. V. Savchenko, “Recognition of facial expressions based on adaptation of the user video data classifier”, Computer optics, 2023, no. 5, 806–815 (In Russian) | DOI | DOI
[3] N. D. Zavodchikov, N. V. Speshilova, S. S. Taspaev, “The use of neural network technologies in predicting the efficiency of grain production”, Proceedings of the Orenburg State Agrarian University, 2015, no. 1 (51), 216–219 (In Russian)
[4] A. Sh. Gaisina, A. I. Minyazev, L. I. Migranova, “Digital model for predicting the employment of a university graduate taking into account behavioral aspects”, Ars administrandi, 15(3) (2023), 406–425 (In Russian) | DOI
[5] G. E. Hinton, S. Osindero, Y. W. Teh, “A fast-learning algorithm for deep belief nets”, Neural computation, 18:7 (2006), 1527–1554 | DOI | MR | Zbl
[6] N. E. Kosykh, A. D. Khomonenko, O. N. Kuranova, “Development of a web application for analyzing the sentiment of text using the flask framework and the Python language”, High technologies in earth space research, 2022, no. 1, 45–52 (In Russian) | DOI | DOI
[7] Z. Liang, Z. Liang, Y. Zheng et al., “Data analysis and visualization platform design for batteries using flask-based Python Web service”, World electric vehicle journal, 12:4 (2021), 187 | DOI
[8] B. Aakash, A. Srilakshmi, “MAGE: An efficient deployment of Python flask Web application to appengine flexible using Google Cloud platform”, Lecture Notes in networks and systems, Singapore, Springer, 2020, 59–68 | DOI
[9] M. S. Kachkov, “Creation of a neural network for solving various applied problems”, News of Tula State University. Technical science, 2023, no. 2, 339–343 (In Russian) | DOI
[10] W. B. Fradj, M. Turki, F. Gargouri, “Deep learning based on TensorFlow and Keras for predictive monitoring of business process execution delays”, Model and Data Engineering, Springer Nature Switzerland, 2023, 156–169 | DOI
[11] K. Balan, M. Santora, M. Faied, V. D. Carmona-Galindo, “Study of evolution By automating hardy weinberg equilibrium with machine learning techniques in TensorFlow and Keras”, 2020 Advanced Computing and Communication Technologies for High Performance Applications (Cochin, India, 2020), 14–19 | DOI
[12] N. S. Fartushnov, “Python language libraries for machine learning, their capabilities and advantages”, Theory and practice of modern science, 2020, no. 5 (59), 397–403 (In Russian)
[13] M. Vagizov, A. Potapov, K. Konzhgoladze et al., “Prepare and analyze taxation data using the Python pandas library”, IOP Conference Series: Earth and Environmental Science, 876, no. 1, IOP Publishing, 2021, 012078 | DOI
[14] A. N. Sychugov, “Application of machine learning for the analysis of technical characteristics and parameters of operating rolling stock on high-speed railways”, Bulletin of Scientific Research Results, 2023, no. 2, 171–180 (In Russian) | DOI | DOI