Automatic calibration of the laser-scanner system
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 3, pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Selective Laser Melting (SLM) technology a high-energy laser deposits metal powder layer-by-layer onto a building platform. High geometric accuracy in SLP is critical to producing high-quality parts. Modern calibration methods require significant manual labor, major equipment modification, or the use of expensive auxiliary equipment. This paper presents a new technique for calibrating galvanometer mirrors for SLP technology using an external camera. The proposed approach allows to simplify, cheapen and automate the calibration process.
Keywords: additive technologies, selective laser melting, computer vision
@article{IZKAB_2024_26_3_a2,
     author = {Yu. D. Shmelev},
     title = {Automatic calibration of the laser-scanner system},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a2/}
}
TY  - JOUR
AU  - Yu. D. Shmelev
TI  - Automatic calibration of the laser-scanner system
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 32
EP  - 41
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a2/
LA  - ru
ID  - IZKAB_2024_26_3_a2
ER  - 
%0 Journal Article
%A Yu. D. Shmelev
%T Automatic calibration of the laser-scanner system
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 32-41
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a2/
%G ru
%F IZKAB_2024_26_3_a2
Yu. D. Shmelev. Automatic calibration of the laser-scanner system. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 3, pp. 32-41. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a2/

[1] A. B. Badiru, V. V. Valencia, D. Liu, Additive manufacturing handbook, CRC Press, 2017, 938 pp. | DOI

[2] S. Cui, X. Zhu, W. Wang et al., “Calibration of a laser galvanometric scanning system by adapting a camera model”, Appl. Opt, 48:14 (2009), 2632–2637 | DOI

[3] B. Lane, Sh. Moylan, Yeung Ho et al., Quasi-static position calibration of the galvanometer scanner on the additive manufacturing metrology testbed, 2020, 25 pp. | DOI

[4] M. A.O. Delgado, A. F. Lasagni, “Reducing field distortion for galvanometer scanning system using a vision system”, Optics and Lasers in Engineering, 86 (2016), 106–114 | DOI

[5] H. Yeung, B. M. Lane, M. A. Donmez, S. Moylan, “In-situ calibration of laser/galvo scanning system using dimensional reference artefact”, CIRP Annals, 69:1 (2020), 441–444 | DOI

[6] Q. Zhong, X. Y. Tian, X. K. Huang et al., “High-accuracy calibration for multi-laser powder bed fusion via in situ detection and parameter identification”, Advances in Manufacturing, 10:4 (2022), 556–570 | DOI | MR

[7] Yeung Ho, S. Grantham, “Laser calibration for powder bed fusion additive manufacturing process”, Solid Freeform Fabrication Symposium 2022 (Austin, TX, US), 2022

[8] F. Caltanissetta, M. Grasso, S. Petro, C. B. M. Colosimo, “Haracterization of In-Situ measurements based on layerwise imaging in laser powder bed fusion”, Additive Manufacturing, 24 (2018), 183–199 | DOI

[9] G. Zenzinger, J. Bamberg, A. Ladewig et al., “Process monitoring of additive manufacturing by using optical tomography”, AIP Conference Proceedings, 1650, American Institute of Physics, 2015, 164–170 pp.

[10] L. Ortiz, L. M.G. Goncalves, E. V. Cabrera, A generic approach for error estimation of depth data from (stereo and RGB-D) 3D sensors, preprint, 2017 | DOI

[11] R. I. Hartley, A. Zisserman, Multiple view geometry in computer vision, ed. Second ed., Cambridge University Press, 2004 | MR | Zbl

[12] G. Farin, “Triangular Bernstein-B'ezier patches”, Computer aided geometric design 3.2., 1986, 83-127 | DOI | MR