Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_3_a0, author = {M. A. Astapova and M. Yu. Uzdyaev and V. M. Kondratyev}, title = {Prediction the yield of green crops based on monitoring morphometric}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {11--20}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a0/} }
TY - JOUR AU - M. A. Astapova AU - M. Yu. Uzdyaev AU - V. M. Kondratyev TI - Prediction the yield of green crops based on monitoring morphometric JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 11 EP - 20 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a0/ LA - ru ID - IZKAB_2024_26_3_a0 ER -
%0 Journal Article %A M. A. Astapova %A M. Yu. Uzdyaev %A V. M. Kondratyev %T Prediction the yield of green crops based on monitoring morphometric %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 11-20 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a0/ %G ru %F IZKAB_2024_26_3_a0
M. A. Astapova; M. Yu. Uzdyaev; V. M. Kondratyev. Prediction the yield of green crops based on monitoring morphometric. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 3, pp. 11-20. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_3_a0/
[1] T. A. Shcherbina, “Digital transformation of agriculture in the Russian Federation: experience and prospects”, Russia: trends and development prospects, 2019, no. 14-1, 450–453 (In Russian) | MR
[2] C. Zhao, Y. Zhang, J. Du et al., “Crop phenomics: current status and perspectives”, Frontiers in Plant Science, 10 (2019), 714 | DOI
[3] R. Shukla, G. Dubey, P. Malik et al., “Detecting crop health using machine learning techniques in smart agriculture system”, Journal of Scientific Industrial Research, 80:08 (2021), 699–706
[4] D. Varshney, B. Babukhanwala, J. Khan et al., “Plant disease detection using machine learning techniques”, 2022 3rd International Conference for Emerging Technology (INCET), IEEE, 2022, 1–5
[5] Y. Jiang, C. Li, “Convolutional neural networks for image-based high-throughput plant phenotyping: a review”, Plant Phenomics, 2020 | DOI | MR
[6] N. D. Adhikari, I. Simko, B. Mou, “Phenomic and physiological analysis of salinity effects on lettuce”, Sensors, 19:21 (2019), 4814 | DOI
[7] I. Simko, R. J. Hayes, R. T. Furbank, “Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors”, Frontiers in plant science, 7 (2016), 1985 | DOI
[8] C. M. Grahn, C. Benedict, T. Thornton, C. Miles, “Production of baby-leaf salad greens in the spring and fall seasons of northwest Washington”, HortScience, 50:10 (2015), 1467–1471 | DOI
[9] Y. Wen, L. Zha, W. Liu, “Dynamic responses of ascorbate pool and metabolism in lettuce to light intensity at night time under continuous light provided by red and blue LEDs”, Plants, 10:2 (2021), 214 | DOI
[10] J. G.A. Barbedo, “Detection of nutrition deficiencies in plants using proximal images and machine learning: A review”, Computers and Electronics in Agriculture, 162 (2019), 482–492 | DOI
[11] D. H. Jung, S. H. Park, X. Z. Han, H. J. Kim, “Image processing methods for measurement of lettuce fresh weight”, Journal of Biosystems Engineering, 40:1 (2015), 89–93 | DOI
[12] Z. Lin, R. Fu, G. Ren et al., “Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning”, Frontiers in Plant Science, 13 (2022), 980581 | DOI
[13] M. Wang, X. Guo, “Extracting the height of lettuce by using neural networks of image recognition in deep learning”, ESS Open Archive, 2022 | DOI
[14] M. S. Gang, H. J. Kim, D. W. Kim, “Estimation of greenhouse lettuce growth indices based on a two-stage CNN using RGB-D images”, Sensors, 22:15 (2022), 5499 | DOI
[15] J. Y. Lu, C. L. Chang, Y. F. Kuo, “Monitoring growth rate of lettuce using deep convolutional neural networks”, 2019 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2019, 1 | DOI
[16] A. Mokhtar, W. El-Ssawy, H. He et al., “Using machine learning models to predict hydroponically grown lettuce yield”, Frontiers in Plant Science, 13 (2022), 706042 | DOI
[17] C. Martinez-Nolasco, J. A. Padilla-Medina, J. J.M. Nolasco et al., “Non-Invasive monitoring of the thermal and morphometric characteristics of lettuce grown in an aeroponic system through multispectral image system”, Applied Sciences, 12:13 (2022), 6540 | DOI
[18] Y. Zhang, M. Wu, J. Li et al., “Automatic non-destructive multiple lettuce traits prediction based on DeepLabV3+”, Journal of Food Measurement and Characterization, 17:1 (2023), 636–652 | DOI
[19] Wada K., Image polygonal annotation with Python, Labelme, 2016 https://github.com/labelmeai/labelme
[20] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, arXiv: 1409.1556 | DOI
[21] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770–778
[22] M. Tan, Q. Le, “Efficient net: Rethinking model scaling for convolutional neural networks”, International conference on machine learning, PMLR, 2019, 6105–6114 | MR
[23] V. Kumar, H. Arora, J. Sisodia, “Resnet-based approach for detection and classification of plant leaf diseases”, 2020 International conference on electronics and sustainable communication systems (ICESC), IEEE, 2020, 495–502 | DOI
[24] G. N. Elwirehardja, J. S. Prayoga, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches”, Computers and Electronics in Agriculture, 188 (2021), 106359 | DOI
[25] J. Wang, H. Zhang, W. Zhou, “Apple automatic classification method based on improved VGG11”, Third International Conference on Computer Vision and Pattern Analysis (ICCPA 2023), Proc. SPIE, 12754, 2023, 473–478