Federated learning for IoT and AIoT:
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 2, pp. 26-33

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses the concept of federated learning (FL), a distributed collaborative approach to artificial intelligence (AI) that enables AI training on distributed IoT devices without need for data sharing. Approaches and methods for implementing FL for AIoT devices have been classified into three types of federated learning architecture for organizing interactions between learning participants, centralized, decentralized, and hybrid. Approaches based on different technologies such as Knowledge Distillation, blockchain, wireless networks like Mesh, Hybrid-IoT, DHA-FL are considered. For each technology considered, the main advantages, problems and challenges are outlined. The paper sums up with conclusions about the prospects of FL development for IoT and AIoT.
Keywords: Internet of things (IoT), federated learning (FL), artificial intelligence of things (AIoT), blockchain
Mots-clés : architecture
@article{IZKAB_2024_26_2_a1,
     author = {Kh. M. Eleev},
     title = {Federated learning for {IoT} and {AIoT:}},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/}
}
TY  - JOUR
AU  - Kh. M. Eleev
TI  - Federated learning for IoT and AIoT:
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 26
EP  - 33
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/
LA  - ru
ID  - IZKAB_2024_26_2_a1
ER  - 
%0 Journal Article
%A Kh. M. Eleev
%T Federated learning for IoT and AIoT:
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 26-33
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/
%G ru
%F IZKAB_2024_26_2_a1
Kh. M. Eleev. Federated learning for IoT and AIoT:. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 2, pp. 26-33. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/