Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_2_a1, author = {Kh. M. Eleev}, title = {Federated learning for {IoT} and {AIoT:}}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {26--33}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/} }
Kh. M. Eleev. Federated learning for IoT and AIoT:. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 2, pp. 26-33. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_2_a1/
[1] A. Khanna, S. Kaur, “Internet of Things (IoT), Applications and challenges: a comprehensive review”, Wireless Personal Communications, 114 (2020), 1687–1762 | DOI | MR
[2] Th. Lynn, E. P. Takako, N. A. Maria et al., “The Internet of Things: definitions, key concepts, and reference architectures”, The Cloud-to-Thing, 2020, 1–22 | DOI | Zbl
[3] M.A. Efremov, I.I. Kholod, “Development of the architecture of a universal federated learning framework”, Software products and systems, 35:2 (2022), 263–272 | DOI
[4] Latif U. Khan, W. Saad, Z. Han et al., “Federated learning for internet of things: recent advances, taxonomy, and open challenges”, IEEE Communications Surveys Tutorials, 23:3 (2021), 1759–1799 | DOI
[5] R. Sanchez-Iborra, “LPWAN and embedded machine learning as enablers for the next generation of wearable devices”, Sensors, 21:15 (2021), 5218 | DOI
[6] B. Fan, S. Jiang, X. Su, P. Hui, Model-heterogeneous federated learning for internet of things: enabling technologies and future directions, arXiv CS - Distributed, Parallel and Cluster Computing, 2023, arXiv: (19.01.2024) 2312.12091
[7] T. Liu, Z. Ling, J. Xia et al., “Efficient federated learning for AIoT applications using knowledge distillation”, IEEE Internet of Things Journal, 10:8 (2023), 7229–7243 | DOI
[8] A. Salama, A. Stergioulis, S. Ali Zaidi, D. McLernon, “Decentralized federated learning on the edge over wireless mesh networks”, IEEE Access, 11 (2023), 124709–124724 | DOI
[9] Y. Liu, Z. Ai, S. Sun et al., FedCoin: A Peer-to-peer payment system for federated learning, 2023, arXiv: (22.01.2024) 2002.11711
[10] X. Wu, Z. Wang, J. Zhao et al., “FedBC: Blockchain-based decentralized federated learning”, IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (Dalian, 2020), 217–221 | DOI
[11] Y. Zhao, J. Zhao, L. Jiang et al., “Privacy-preserving blockchain-based federated learning for IoT device”, EEE Internet of Things Journal, 8:3 (2021), 1817–1829 | DOI
[12] G. Sagirlar, B. Carminati, E. Ferrari et al., “Hybrid-IoT: Hybrid blockchain architecture for internet of things PoW sub-blockchains”, IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (Los Alamitos, 2018), IEEE Computer Society, 1007–1016 | DOI
[13] I. G.A. K. Gemeliarana, Sari. R.F., “Evaluation of proof of work (POW) blockchains security network on selfish mining”, International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (Yogyakarta, 2018), 126–130 | DOI
[14] S. Fahim, S. Mahmood, S. M. Katibur Rahman, “Blockchain: A Comparative study of consensus algorithms PoW, PoS, PoA, PoV”, International Journal of Mathematical Sciences and Computing (IJMSC), 9:3 (2023), 46–57 | DOI | MR
[15] W. Houston Huff, R. Balakrishnan, Hao Feng et al., DHA-FL: Enabling efficient and effective AIoT via decentralized hierarchical asynchronous federated learning, MLSys-RCLWN, Miami, 2023
[16] T. Zhang, L. Gao, C. He et al., “Federated learning for internet of things: applications, challenges, and opportunities”, IEEE Internet of Things Magazine, 5:1 (2022), 24–29 | DOI