Boundary value problem for loaded parabolic equations
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 1, pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the second boundary value problem for a loaded parabolic equation with a fractional Riemann – Liouville integro-differentiation operator. The unambiguous solvability of the second boundary value problem is proved. Using the Green function method with the theory of the potential of a simple layer, the problem is reduced to a system of Volterra integral equations of the second kind.
Keywords: boundary value problems, fractional integro-differentiation operator, loaded equation, regular solution
Mots-clés : parabolic equations
@article{IZKAB_2024_26_1_a4,
     author = {M. M. Karmokov and F. M. Nakhusheva and M. H. Abregov},
     title = {Boundary value problem for loaded parabolic equations},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/}
}
TY  - JOUR
AU  - M. M. Karmokov
AU  - F. M. Nakhusheva
AU  - M. H. Abregov
TI  - Boundary value problem for loaded parabolic equations
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 69
EP  - 77
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/
LA  - ru
ID  - IZKAB_2024_26_1_a4
ER  - 
%0 Journal Article
%A M. M. Karmokov
%A F. M. Nakhusheva
%A M. H. Abregov
%T Boundary value problem for loaded parabolic equations
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 69-77
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/
%G ru
%F IZKAB_2024_26_1_a4
M. M. Karmokov; F. M. Nakhusheva; M. H. Abregov. Boundary value problem for loaded parabolic equations. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/

[1] A. M. Nakhushev, Loaded equations and their application, Nauka, Moscow, 2012, 232 pp. (in Russian)

[2] A. M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, Moscow, 1995, 301 pp. (in Russian)

[3] A. M. Nakhushev, “On the Darboux problem for a degenerate loaded second-order integro differential equation”, Differential equations, 12:1 (1976), 103–108 (in Russian) | MR | Zbl

[4] Kh. B. Dikinov, A. A. Kerefov, A. M. Nakhushev, “On a boundary value problem for the loaded equation of thermal conductivity”, Differential equations, 12 (1976), 177–179 (in Russian) | MR | Zbl

[5] M. M. Karmokov, Local and non-local boundary value problems for discontinuously loaded parabolic equations eprintinfo Kand. diss., Nalchik, 1990, 86 pp. (in Russian)

[6] A. V. Pskhu, Partial differential equations of fractional order, Nauka, Moscow, 2005, 199 pp. (in Russian)

[7] S. Kh. Gekkieva, “Mixed boundary value problems for the loaded diffusion-wave equation”, Scientific Bulletin of Belgorod Stade University. Senes: Mathemaitics. Physics, 42:6 (227) (2016), 32–35 (in Russian)

[8] F. M. Nakhusheva, M. M. Lafisheva, M. M. Karmokov, M. A. Dzhankulaeva, “A numerical method for solving a boundary value problem for a parabolic equation with a fractional time derivative with a concentrated heat capacity”, News of the Kabardino-Balkarian Scientific Center of RAS, 2018, no. 5 (85), 34–43 (in Russian)

[9] M. Kh. Beshtokov, V. A. Vodakhova, M. M. Isakova, “Approximate solution of the first boundary value problem for the loaded heat equation”, Mathematical physics and computer modeling, 26:4 (2023), 5–17 (in Russian) | MR

[10] A. Friedman, Partial Differential Equations of Parabolic Type, Mir, Moscow, 1968, 427 pp. (in Russian)