Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_1_a4, author = {M. M. Karmokov and F. M. Nakhusheva and M. H. Abregov}, title = {Boundary value problem for loaded parabolic equations}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {69--77}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/} }
TY - JOUR AU - M. M. Karmokov AU - F. M. Nakhusheva AU - M. H. Abregov TI - Boundary value problem for loaded parabolic equations JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 69 EP - 77 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/ LA - ru ID - IZKAB_2024_26_1_a4 ER -
%0 Journal Article %A M. M. Karmokov %A F. M. Nakhusheva %A M. H. Abregov %T Boundary value problem for loaded parabolic equations %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 69-77 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/ %G ru %F IZKAB_2024_26_1_a4
M. M. Karmokov; F. M. Nakhusheva; M. H. Abregov. Boundary value problem for loaded parabolic equations. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_1_a4/
[1] A. M. Nakhushev, Loaded equations and their application, Nauka, Moscow, 2012, 232 pp. (in Russian)
[2] A. M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, Moscow, 1995, 301 pp. (in Russian)
[3] A. M. Nakhushev, “On the Darboux problem for a degenerate loaded second-order integro differential equation”, Differential equations, 12:1 (1976), 103–108 (in Russian) | MR | Zbl
[4] Kh. B. Dikinov, A. A. Kerefov, A. M. Nakhushev, “On a boundary value problem for the loaded equation of thermal conductivity”, Differential equations, 12 (1976), 177–179 (in Russian) | MR | Zbl
[5] M. M. Karmokov, Local and non-local boundary value problems for discontinuously loaded parabolic equations eprintinfo Kand. diss., Nalchik, 1990, 86 pp. (in Russian)
[6] A. V. Pskhu, Partial differential equations of fractional order, Nauka, Moscow, 2005, 199 pp. (in Russian)
[7] S. Kh. Gekkieva, “Mixed boundary value problems for the loaded diffusion-wave equation”, Scientific Bulletin of Belgorod Stade University. Senes: Mathemaitics. Physics, 42:6 (227) (2016), 32–35 (in Russian)
[8] F. M. Nakhusheva, M. M. Lafisheva, M. M. Karmokov, M. A. Dzhankulaeva, “A numerical method for solving a boundary value problem for a parabolic equation with a fractional time derivative with a concentrated heat capacity”, News of the Kabardino-Balkarian Scientific Center of RAS, 2018, no. 5 (85), 34–43 (in Russian)
[9] M. Kh. Beshtokov, V. A. Vodakhova, M. M. Isakova, “Approximate solution of the first boundary value problem for the loaded heat equation”, Mathematical physics and computer modeling, 26:4 (2023), 5–17 (in Russian) | MR
[10] A. Friedman, Partial Differential Equations of Parabolic Type, Mir, Moscow, 1968, 427 pp. (in Russian)