Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2023_6_a8, author = {E. M. Kazakova}, title = {Training an artificial neural network}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {95--102}, publisher = {mathdoc}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a8/} }
E. M. Kazakova. Training an artificial neural network. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 95-102. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a8/
[1] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”, IEE International Conference on Neural Networks, 1995, 1942–1948 | DOI
[2] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems”, Int J Indus Eng Comput, 1:7 (2016), 19–34 | DOI
[3] A. P. Karpenko, Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, MGTU im. N. E. Baumana, 2 izdanie. M., 2017, 446 pp.
[4] H. Garg, “A hybrid PSO-GA algorithm for constrained optimization problems”, Applied Mathematics and Computation, 274 (2016), 292–305 | DOI | MR | Zbl
[5] S. Mirjalili, S. Z.M. Hashim, “A new hybrid PSOGSA algorithm for function optimization”, Proceedings of ICCIA 2010-2010 International Conference on Computer and Information Application, 2010, 374–377 | DOI
[6] F. A. Senel, F. Yuksel A. S. Gokce et al, “A novel hybrid PSO-GWO algorithm for optimization problems”, Engineering with Computers, 35 (2019), 1359–1373 | DOI
[7] Y. Zhou, P. A. Shengyu, “Hybrid Co-evolutionary particle swarm optimization algorithm for solving constrained engineering design problems”, J. Comput, 6:5 (2010), 965–972 | DOI | MR
[8] S. A. Mirjalili, S. Z.M. Hashim, H. M. Sardroudi, “Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm”, Applied Mathematics and Computation, 22:218 (2012), 11125–11137 | DOI | MR | Zbl
[9] F. E.F. Junior, G. G. Yen, “Particle swarm optimization of deep neural networks architectures for image classification”, Swarm and Evolutionary Computation, 49 (2019), 62–74 | DOI
[10] B. A. Garro, R. A. Vazquez, “Designing artificial neural networks using particle swarm optimization algorithms”, Computational intelligence and neuroscience, 2015, 61 | DOI
[11] J. R. Zhang, J. Zhang, T. M. Lok, M. R. Lyu, “A hybrid particle swarm optimization-backpropagation algorithm for feedforward neural network training”, Applied mathematics and computation, 2:185 (2007), 1026–1037 | DOI | MR
[12] R. Siegler, Balance Scale. UCI Machine Learning Repository, 1994 | DOI