Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2023_6_a7, author = {D. A. Tverdyi}, title = {Restoration of the order of fractional derivative}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {83--94}, publisher = {mathdoc}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a7/} }
D. A. Tverdyi. Restoration of the order of fractional derivative. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 83-94. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a7/
[1] S. I. Kabanihin, K. T. Iskakov, Optimisation methods for solving coefficient inverse problems, Novosibirskij gosudarstvennyj universitet, Novosibirsk, 2001, 315 pp. (In Russian)
[2] V. P. Rudakov, Emanation monitoring of geo-mediations and processes, Nauchnyj mir, Moscow, 2009, 175 pp. (In Russian)
[3] P. P. Firstov, E. O. Makarov, I. P. et. al. Gluhova, “Search for strong earthquake precursor anomalies from subsurface gas monitoring data at the Petropavlovsk-Kamchatsky geodynamic test site”, Geosystems of transition zones, 1:2 (2018), 16–32 (In Russian) | DOI
[4] R. D. Cicerone, J. E. Ebel, J. Beitton, “A systematic compilation of earthquake precursors”, Tectonophysics, 476:3-4 (2009), 371–396 | DOI
[5] M. Neri, S. Giammanco, E. Ferrera et al., “Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: The example of Mt. Etna (Italy)”, Journal of environmental radioactivity, 102(9) (2011), 863–870 | DOI
[6] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization, SIAM, Philadelphia, 2019, 421 pp. | MR
[7] D. A. Tverdyi, E. O. Makarov, R. I. Parovik, “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics. 2022. Vol. 11. No, 4:850, 1–20 | DOI | MR
[8] D. A. Tverdyi, E. O. Makarov, R. I. Parovik, “Research of Stress-Strain State of GeoEnvironment by Emanation Methods on the Example of alpha(t)-Model of Radon Transport”, Bulletin KRASEC. Physical and Mathematical Sciences, 3:44 (2023), 86–104 (In Russian) | DOI
[9] A. S. Ponamarev, “Fractionation in hydrotherm as a potential possibility of formation of earthquake precursors”, Geochemistry, 1989, no. 5, 714–724 (In Russian)
[10] R. I. Parovik, Mathematical modelling of the non-classical theory of the emanation method, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2014, 80 pp. (In Russian)
[11] A. V. Vasilyev, M. V. Zhukovsky, “Determination of mechanisms and parameters which affect radon entry into a room”, Journal of Environmental Radioactivity, 124 (2013), 185–190 | DOI
[12] P. P. Firstov, E. O. Makarov, Dynamics of subsurface radon in Kamchatka and strong earthquakes, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2018, 148 pp. (In Russian)
[13] C. Y. King, “Isotopic geochemical precursors of earthquakes and volcanic eruption”, Advisory Group Meeting held. Vienna. International atomic energy agency, 1991, 22–36
[14] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. Berlin, Springer, 2013, 373 pp. | MR
[15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier Science Limited, 2006, 204 pp. | MR
[16] A. M. Nahushev, Fractional calculus and its applications, Fizmatlit, Moscow, 2003, 272 pp. (In Russian)
[17] A. V. Pskhu, Equations in partial derivatives of fractional order, Nauka, Moscow, 2005, 199 pp. (In Russian)
[18] V. Volterra, Functional theory, integral and integro-differential equations, Blackie Son Limited, London, 1930, 226 pp. | MR
[19] A. N. Gerasimov, “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR
[20] M. Caputo, Elasticita e Dissipazione, Bologna, Zanichelli, 1969, 150 pp.