Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2023_6_a19, author = {Z. V. Nagoev and O. V. Nagoeva and D. G. Makoeva and I. A. Gurtueva}, title = {Multi-agent neurocognitive algorithm for controlling the reference}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {193--209}, publisher = {mathdoc}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/} }
TY - JOUR AU - Z. V. Nagoev AU - O. V. Nagoeva AU - D. G. Makoeva AU - I. A. Gurtueva TI - Multi-agent neurocognitive algorithm for controlling the reference JO - News of the Kabardin-Balkar scientific center of RAS PY - 2023 SP - 193 EP - 209 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/ LA - ru ID - IZKAB_2023_6_a19 ER -
%0 Journal Article %A Z. V. Nagoev %A O. V. Nagoeva %A D. G. Makoeva %A I. A. Gurtueva %T Multi-agent neurocognitive algorithm for controlling the reference %J News of the Kabardin-Balkar scientific center of RAS %D 2023 %P 193-209 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/ %G ru %F IZKAB_2023_6_a19
Z. V. Nagoev; O. V. Nagoeva; D. G. Makoeva; I. A. Gurtueva. Multi-agent neurocognitive algorithm for controlling the reference. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 193-209. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/
[1] Z. V. Nagoev, Intelligence, or Thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (In Russian)
[2] Cyrus H. Gordon, “The Accidental Invention of the Phonemic Alphabet”, Journal of Near Eastern Studies, 29:3 (1970), 193–197
[3] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (AIMA), 2nd ed., Williams, Moscow, 2007, 1424 pp.
[4] Z. V. Nagoev, O. V. Nagoeva, Symbol grounding and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (In Russian)
[5] Z. Nagoev, O. Nagoeva, M. Anchekov et al, “The symbol grounding problem in the system of general artificial intelligence based on multi-agent neurocognitive architecture”, Cognitive Systems Researchthis link is disabled, 2023, no. 79, 71–84
[6] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research. Vol. 66. 2021.88. ISSN, 1389–0417 | DOI
[7] Z. Nagoev, O. Nagoeva, I. Gurtueva, “Multi-agent neurocognitive models of semantics of spatial localization of events”, Cognitive Systems Research, 59 (2020), 91–102 | DOI
[8] Z. Nagoev, I. Gurtueva, D. Malyshev, Z. Sundukov, “Multi-agent algorithm imitating formation of phonemic awareness”, Advances in Intelligent Systems and Computing, 948 (2020), 364–369 | DOI
[9] Z. Nagoev, I. Pshenokova, I. Gurtueva, K. Bzhikhatlov, “A simulation model for the cognitive function of static objects recognition based on machine-learning multi-agent architectures”, Advances in Intelligent Systems and Computing, 948 (2020), 370–378
[10] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of the Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4 (54), 46–56 (In Russian)
[11] P. Y. Hui, H. Meng, “Latent Semantic Analysis for Multimodal User Input With Speech and Gestures”, IEEE/ACM Transactions on Audio, Speech and Language Processing, 22:2 (2014), 417–429 | DOI
[12] V. Despotovic, O. Walter, R. Haeb-Umbach, “Machine learning techniques for semantic analysis of dysarthric speech: An experimental study”, Speech Communication, 99 (2018), 242–251