Multi-agent neurocognitive algorithm for controlling the reference
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 193-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic principles, models and algorithms for controlling the reference of speech messages have been developed based on the creation of a two-circuit model of multi-agent neurocognitive architecture – a superintellecton, which implements the interaction of the subconscious intellecton and the conscious intellecton. Requirements for ontologies of a general artificial intelligence agent, the conditions for their formation, and the functional units of neurocognitive architectures necessary for their effective formation in the training mode are outlined. The results obtained can be used to create speech recognition and understanding systems that are operational when used in noisy environments and situations of multiple synchronous dialogues to improve the quality of recognition using an understanding of the context of situations.
Keywords: artificial general intelligence, multi-agent systems, neurocognitive architectures, speechrecognition, speech understanding
@article{IZKAB_2023_6_a19,
     author = {Z. V. Nagoev and O. V. Nagoeva and D. G. Makoeva and I. A. Gurtueva},
     title = {Multi-agent neurocognitive algorithm for controlling the reference},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {193--209},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/}
}
TY  - JOUR
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - D. G. Makoeva
AU  - I. A. Gurtueva
TI  - Multi-agent neurocognitive algorithm for controlling the reference
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 193
EP  - 209
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/
LA  - ru
ID  - IZKAB_2023_6_a19
ER  - 
%0 Journal Article
%A Z. V. Nagoev
%A O. V. Nagoeva
%A D. G. Makoeva
%A I. A. Gurtueva
%T Multi-agent neurocognitive algorithm for controlling the reference
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 193-209
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/
%G ru
%F IZKAB_2023_6_a19
Z. V. Nagoev; O. V. Nagoeva; D. G. Makoeva; I. A. Gurtueva. Multi-agent neurocognitive algorithm for controlling the reference. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 193-209. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a19/

[1] Z. V. Nagoev, Intelligence, or Thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (In Russian)

[2] Cyrus H. Gordon, “The Accidental Invention of the Phonemic Alphabet”, Journal of Near Eastern Studies, 29:3 (1970), 193–197

[3] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (AIMA), 2nd ed., Williams, Moscow, 2007, 1424 pp.

[4] Z. V. Nagoev, O. V. Nagoeva, Symbol grounding and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (In Russian)

[5] Z. Nagoev, O. Nagoeva, M. Anchekov et al, “The symbol grounding problem in the system of general artificial intelligence based on multi-agent neurocognitive architecture”, Cognitive Systems Researchthis link is disabled, 2023, no. 79, 71–84

[6] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research. Vol. 66. 2021.88. ISSN, 1389–0417 | DOI

[7] Z. Nagoev, O. Nagoeva, I. Gurtueva, “Multi-agent neurocognitive models of semantics of spatial localization of events”, Cognitive Systems Research, 59 (2020), 91–102 | DOI

[8] Z. Nagoev, I. Gurtueva, D. Malyshev, Z. Sundukov, “Multi-agent algorithm imitating formation of phonemic awareness”, Advances in Intelligent Systems and Computing, 948 (2020), 364–369 | DOI

[9] Z. Nagoev, I. Pshenokova, I. Gurtueva, K. Bzhikhatlov, “A simulation model for the cognitive function of static objects recognition based on machine-learning multi-agent architectures”, Advances in Intelligent Systems and Computing, 948 (2020), 370–378

[10] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of the Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4 (54), 46–56 (In Russian)

[11] P. Y. Hui, H. Meng, “Latent Semantic Analysis for Multimodal User Input With Speech and Gestures”, IEEE/ACM Transactions on Audio, Speech and Language Processing, 22:2 (2014), 417–429 | DOI

[12] V. Despotovic, O. Walter, R. Haeb-Umbach, “Machine learning techniques for semantic analysis of dysarthric speech: An experimental study”, Speech Communication, 99 (2018), 242–251