Neurocognitive learning algorithm for a multi-agent system
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 179-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is aimed at creating a methodology for using general artificial intelligence systems to manage the process of creating new plant hybrids with a given set of economically useful traits. The basic principles for creating plant simulation models based on multi-agent modeling based on enlarged conditional cell agents, the synthesis of whose behavior is carried out by the controling neurocognitive architecture, have been developed. The basic principles for creating an automatic data collection system for evolutionary machine learning of intelligent expert systems for breeding and seed production based on robotic digital phenotyping and genetic data have been developed. An algorithm has been developed for training a decentralized system for controlling the growth and development of plant simulation models based on the identification of phenogenotypic characteristics of growth and development processes determined by the expression of plant genes.
Keywords: artificial general intelligence, multi-agent systems, neurocognitive architectures, plant breeding, gene expression, machine learning, digital phenotyping
@article{IZKAB_2023_6_a18,
     author = {Z. V. Nagoev and M. I. Anchekov and Zh. H. Kurashev and A. A. Khamov},
     title = {Neurocognitive learning algorithm for a multi-agent system},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {179--192},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/}
}
TY  - JOUR
AU  - Z. V. Nagoev
AU  - M. I. Anchekov
AU  - Zh. H. Kurashev
AU  - A. A. Khamov
TI  - Neurocognitive learning algorithm for a multi-agent system
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 179
EP  - 192
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/
LA  - ru
ID  - IZKAB_2023_6_a18
ER  - 
%0 Journal Article
%A Z. V. Nagoev
%A M. I. Anchekov
%A Zh. H. Kurashev
%A A. A. Khamov
%T Neurocognitive learning algorithm for a multi-agent system
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 179-192
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/
%G ru
%F IZKAB_2023_6_a18
Z. V. Nagoev; M. I. Anchekov; Zh. H. Kurashev; A. A. Khamov. Neurocognitive learning algorithm for a multi-agent system. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 179-192. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/

[1] M. I. Anchekov, Z. I. Bogotova, I. A. Pshenokova et al., “Collaborative breeding system based on a consortium of heterogeneous intelligent agents”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 25–37 (In Russian) | DOI

[2] M. I. Anchekov, K. Ch. Bzhikhatlov, Z. V. Nagoev et al, “Ontoepisociophylogenetic development of general artificial intelligence systems based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 6 (110), 61–75 (In Russian) | DOI

[3] M. I. Anchekov, A. Z. Apshev, K. Ch. Bzhikhatlov et al., “Formal genome model of a general artificial intelligence agent based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 5 (115), 11–24 (In Russian)

[4] R. Doursat, “Organically grown architectures: Creating decentralized, autonomous systems by embryomorphic engineering”, Organic Computing, 2008, 167–200, Springer-Verlag

[5] A. Fedor, I. Zachar, A. Szilagyi et al., “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol, 8 (2017) | DOI

[6] J. Werfel, R. Nagpal, “Extended stigmergy in collective construction”, IEEE Intelligent Systems, 2006, no. 21 (2), 20–28 | DOI

[7] M. Jinek, K. Chilynksi, I. Fonfara et al., “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”, Science, 337:6069 (2012), 816–821 | DOI

[8] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (In Russian)

[9] M. I. Anchekov, K. Ch. Bzhikhatlov, A. M. Leshkenov, “High-throughput crop phenotyping systems”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 19–24 (In Russian)

[10] Z. V. Nagoev, O. V. Nagoeva, Symbol grounding and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (In Russian)