Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2023_6_a18, author = {Z. V. Nagoev and M. I. Anchekov and Zh. H. Kurashev and A. A. Khamov}, title = {Neurocognitive learning algorithm for a multi-agent system}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {179--192}, publisher = {mathdoc}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/} }
TY - JOUR AU - Z. V. Nagoev AU - M. I. Anchekov AU - Zh. H. Kurashev AU - A. A. Khamov TI - Neurocognitive learning algorithm for a multi-agent system JO - News of the Kabardin-Balkar scientific center of RAS PY - 2023 SP - 179 EP - 192 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/ LA - ru ID - IZKAB_2023_6_a18 ER -
%0 Journal Article %A Z. V. Nagoev %A M. I. Anchekov %A Zh. H. Kurashev %A A. A. Khamov %T Neurocognitive learning algorithm for a multi-agent system %J News of the Kabardin-Balkar scientific center of RAS %D 2023 %P 179-192 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/ %G ru %F IZKAB_2023_6_a18
Z. V. Nagoev; M. I. Anchekov; Zh. H. Kurashev; A. A. Khamov. Neurocognitive learning algorithm for a multi-agent system. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 179-192. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a18/
[1] M. I. Anchekov, Z. I. Bogotova, I. A. Pshenokova et al., “Collaborative breeding system based on a consortium of heterogeneous intelligent agents”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 25–37 (In Russian) | DOI
[2] M. I. Anchekov, K. Ch. Bzhikhatlov, Z. V. Nagoev et al, “Ontoepisociophylogenetic development of general artificial intelligence systems based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 6 (110), 61–75 (In Russian) | DOI
[3] M. I. Anchekov, A. Z. Apshev, K. Ch. Bzhikhatlov et al., “Formal genome model of a general artificial intelligence agent based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2023, no. 5 (115), 11–24 (In Russian)
[4] R. Doursat, “Organically grown architectures: Creating decentralized, autonomous systems by embryomorphic engineering”, Organic Computing, 2008, 167–200, Springer-Verlag
[5] A. Fedor, I. Zachar, A. Szilagyi et al., “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol, 8 (2017) | DOI
[6] J. Werfel, R. Nagpal, “Extended stigmergy in collective construction”, IEEE Intelligent Systems, 2006, no. 21 (2), 20–28 | DOI
[7] M. Jinek, K. Chilynksi, I. Fonfara et al., “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”, Science, 337:6069 (2012), 816–821 | DOI
[8] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (In Russian)
[9] M. I. Anchekov, K. Ch. Bzhikhatlov, A. M. Leshkenov, “High-throughput crop phenotyping systems”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 19–24 (In Russian)
[10] Z. V. Nagoev, O. V. Nagoeva, Symbol grounding and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (In Russian)