A combined method for histogram equalization
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 160-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

When working with raw images obtained directly from the equipment matrix, specific problems arise associated with a large dynamic range. The paper proposes a combined histogram correction method that can significantly improve the contrast of such raw images with a large dynamic range. In the combined method, soft clipping of highlights in the histogram is performed using a clustering algorithm based on partitioning the feature space and gamma correction of the clipped area. The clustering algorithm used manages to identify the cutoff point, both in the presence and absence of highlights in the image. The method also produces weak edge accentuation based on Sobel filters. To improve the histogram, the well-known Contrast Limited Adaptive Histogram Equalization method is used. In this case, a combination of transformations with different mesh sizes is used, which allows one to achieve much better results than when selecting one optimal transformation. These algorithms are described in detail and illustrations for comparison are provided.
Mots-clés : histogram
Keywords: histogram equalization, x-ray images, image processing, contrast enhancement,clustering
@article{IZKAB_2023_6_a16,
     author = {M. A. Kazakov},
     title = {A combined method for histogram equalization},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {160--166},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a16/}
}
TY  - JOUR
AU  - M. A. Kazakov
TI  - A combined method for histogram equalization
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 160
EP  - 166
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a16/
LA  - ru
ID  - IZKAB_2023_6_a16
ER  - 
%0 Journal Article
%A M. A. Kazakov
%T A combined method for histogram equalization
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 160-166
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a16/
%G ru
%F IZKAB_2023_6_a16
M. A. Kazakov. A combined method for histogram equalization. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 160-166. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a16/

[1] D. Vijayalakshmi, M. K. Nath, O. P. Acharya, “A comprehensive survey on image contrast enhancement techniques in spatial domain”, Sensing and Imaging, 21:1 (2020), 40 | DOI

[2] R. E. Woods, R. C. Gonzalez, Digital Image Processing, Pearson, England, 2021, 1022 pp.

[3] A. K. Jain, Fundamentals of digital image processing, Pearson, England, 1989, 569 pp.

[4] S. Naidu, A. Quadros, A. Natekar et al., “Enhancement of X-ray images using various Image processing approaches”, International Conference on technological advancements and innovations, Tashkent, 2021, 115–120 | DOI | MR

[5] R. Ishigami, T. T. Zin, N. Shinkawa, R. Nishii, “Human identifi cation using X-Ray image matching”, Proceedings of the International multi conference of engineers and computer scientists, Hong Kong, 2017

[6] P. Rajpurkar, J. Irvin, K. Zhu et al., Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning, 2017, arXiv: arXiv:1711.05225

[7] M. V.L. Costa, E. J. Aguiar, “A Deep learning-based radiomics approach for COVID-19 detection from CXR images using ensemble learning model”, XXXVI International Symposium on Computer-Based Medical Systems. L'Aquila, Italy, 2023, 517–522 | DOI

[8] M. Radvansky, M. Kudelka, E. Kriegova, “Process of finding human knee in image based on multiple weighted thresholding and histograms of gradients”, XXIV International Carpathian Control Conference, Miskolc-Szilvasvarad, Hungary, 2023, 358–363 | DOI

[9] S. M. Pizer, E. P. Amburn, J. D. Austin, “Adaptive histogram equalization and its variations”, Computer vision, graphics and image processing, 39 (1987), 355–368 | DOI

[10] R. Cromartie, S. M. Pizer, “Edge-affected context for adaptive contrast enhancement”, Proceedings of the XLLTH International meeting on information processing in medical imaging, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1991, 474–485 | DOI

[11] K. J. Zuiderveld, “Contrast limited adaptive histogram equalization”, Graphics gems, 1994, 474–485 | DOI

[12] M. A. Kazakov, “Clustering Algorithm Based on Feature Space Partitioning”, International Russian Automation Conference, 2022, 399–403 | DOI | MR

[13] I. Sobel, “An Isotropic 3x3 Image Gradient Operator”, Presentation at Stanford A.I. Project, 1968 (2014)