The use of convolutional neural networks
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2023), pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article provides an overview of existing convolutional neural network architectures and their application in the classification task for detecting diseases of fruits and plants. Diseases of plants and fruits are a serious problem in agriculture and horticulture, and their early detection can help in taking timely measures to prevent the spread and minimize damage. The results of the study can be useful for the development of automated systems for detecting diseases of fruits and plants, which helps to increase yields.
Keywords: neural networks, machine learning, convolutional network architecture, computer vision
Mots-clés : image classification.
@article{IZKAB_2023_5_a3,
     author = {M. A. Shereuzheva and M. A. Shereuzhev and Z. M. Albekova},
     title = {The use of convolutional neural networks},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {41--51},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a3/}
}
TY  - JOUR
AU  - M. A. Shereuzheva
AU  - M. A. Shereuzhev
AU  - Z. M. Albekova
TI  - The use of convolutional neural networks
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 41
EP  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a3/
LA  - ru
ID  - IZKAB_2023_5_a3
ER  - 
%0 Journal Article
%A M. A. Shereuzheva
%A M. A. Shereuzhev
%A Z. M. Albekova
%T The use of convolutional neural networks
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 41-51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a3/
%G ru
%F IZKAB_2023_5_a3
M. A. Shereuzheva; M. A. Shereuzhev; Z. M. Albekova. The use of convolutional neural networks. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2023), pp. 41-51. http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a3/

[1] Digital agriculture, https://en.wikipedia.org/wiki/Digital_ agriculture

[2] M. A. Shereuzheva, M. A. Shereuzhev, “Development of expert systems to improve the efficiency of growing plants in agriculture”, News of the Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 93–104 (In Russian) | DOI | DOI

[3] Z. V. Nagoev, V. M. Shuganov, K. Ch. Bzhikhatlov et al., “Prospects for increasing the productivity and efficiency of agricultural production with the use of an intelligent integrated environment”, News of the Kabardino-Balkarian Scientific Center of RAS, 2021, no. 6 (104), 155–165 (In Russian) | DOI | DOI

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, Communications of the ACM, 60:6 (2012), 84–90

[5] A. Pushkarev, O. Yakubailik, “A web application for visualization, analysis, and processing of agricultural monitoring spatial-temporal data”, CEUR Workshop Proceedings, 3006, 2021, 231–237 pp. http://ceur-ws.org/Vol-3006/27_short_paper.pdf

[6] E. A. Skvortsov, E. G. Skvortsova, I. S. Sandu et al., “Transition of Agriculture to Digital, Intellectual and Robotics Technologies”, Economy of Region, 14:3 (2018), 1014–1028 (In Russian)

[7] K. He et al, “Deep residual learning for image recognition”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770–778 pp.

[8] F. Iandola et al., Densenet: Implementing efficient convnet descriptor pyramids, 2014, arXiv: 1404.1869

[9] G. Huang, Z. Liu, Van Der Maaten et al., “Connected convolutional networks”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 4700–4708 | MR

[10] M. Sandler, A. Howard, M. Zhu et al., “MobileNetV2. Inverted residuals and linear bottlenecks”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, 4510–4520 | Zbl

[11] C. Szegedy et al., “Inception-v4, inception-resnet and the impact of residual connections on learning”, Thirty-first AAAI conference on artificial intelligence, 2017

[12] M. Tan, Le Q. Efficientnet, “Rethinking model scaling for convolutional neural networks”, International conference on machine learning. PMLR, 2019, 6105–6114