Formal genome model of a general artificial intelligence agent based
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2023), pp. 11-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relevance of the research is determined by the need to develop and programmatically implement artificial general intelligence agents capable of self-learning based on adaptation to the conditions of solving problems of the universal spectrum based on the ontoepiphilosociogenetic learning process. The research is aimed at developing a formalization of a general artificial intelligence agent suitable for creating its simulation model. A formalization of an intelligent agent is constructed based on two-level multi-agent neurocognitive architectures using an automatic description and multi-agent functions. A formal description of the genomes of neuron agents as part of a multi-agent neurocognitive architecture and the genotype of an intelligent agent has been developed. The resulting formalization can be used to create software for general artificial intelligence systems.
Keywords: general artificial intelligence, multi-agent systems, neurocognitive architectures, abstract deterministic automata, multi-generational optimization, genetic algorithms, multi-agent functions.
@article{IZKAB_2023_5_a0,
     author = {M. I. Anchekov and A. Z. Apshev and K. Ch. Bzhikhatlov and S. A. Kankulov and Z. V. Nagoev and O. V. Nagoeva and I. A. Pshenokova and A. A. Khamov and A. Z. Enes},
     title = {Formal genome model of a general artificial intelligence agent based},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {11--24},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a0/}
}
TY  - JOUR
AU  - M. I. Anchekov
AU  - A. Z. Apshev
AU  - K. Ch. Bzhikhatlov
AU  - S. A. Kankulov
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - I. A. Pshenokova
AU  - A. A. Khamov
AU  - A. Z. Enes
TI  - Formal genome model of a general artificial intelligence agent based
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 11
EP  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a0/
LA  - ru
ID  - IZKAB_2023_5_a0
ER  - 
%0 Journal Article
%A M. I. Anchekov
%A A. Z. Apshev
%A K. Ch. Bzhikhatlov
%A S. A. Kankulov
%A Z. V. Nagoev
%A O. V. Nagoeva
%A I. A. Pshenokova
%A A. A. Khamov
%A A. Z. Enes
%T Formal genome model of a general artificial intelligence agent based
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 11-24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a0/
%G ru
%F IZKAB_2023_5_a0
M. I. Anchekov; A. Z. Apshev; K. Ch. Bzhikhatlov; S. A. Kankulov; Z. V. Nagoev; O. V. Nagoeva; I. A. Pshenokova; A. A. Khamov; A. Z. Enes. Formal genome model of a general artificial intelligence agent based. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2023), pp. 11-24. http://geodesic.mathdoc.fr/item/IZKAB_2023_5_a0/

[1] M. I. Anchekov, K. Ch. Bzhikhatlov, Z. V. Nagoev et al, “Onto-episociophilogenetic develop ment of general artificial intelligence systems based on multi-agent neurocognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 6 (110), 61–75 (In Russian) | DOI

[2] A. Z. Apshev, B. A. Atalikov, S. A. Kankulov et al, “Ontophylogenetic algorithms for the synthesis of phenotypes of intelligent software agents for use in multigenerational optimization problems con trol neuro-cognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS. 2022., no. 6 (110), 76–91 (In Russian) | DOI

[3] Z. Nagoev, O. Nagoeva, M. Anchekov et al, “The symbol grounding problem in the system of general artificial intelligence based on multi-agent neurocognitive architecture”, Cognitive Systems Research, 2023, no. 79, 71–84 | DOI

[4] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (In Russian)

[5] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4 (54), 46–56 (In Russian)

[6] J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, 1975 | MR

[7] Z. V. Nagoev, O. V. Nagoeva, Justification of symbols and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (In Russian)

[8] Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach (AIMA), 2nd ed., Williams, Moscow, 2007, 1424 pp.

[9] Z. V. Nagoev, “Multi-agent existential mappings and functions”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4 (54), 63–71 (In Russian)

[10] M. I. Anchekov, K. Ch. Bzhikhatlov, A. M. Leshkenov, “High-performance systems for phenotyping agricultural crops”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 19–24 (In Russian) | DOI

[11] M. I. Anchekov, Z. I. Bogotova, I. A. Pshenokova et al, “Collaborative breeding system based on a consortium of heterogeneous intelligent agents”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 25–37 (In Russian) | DOI