Ontophylogenetic algorithms for the synthesis of intellectual phenotypes
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 76-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the study is to develop methods and algorithms for the ontophylogenetic synthesis of artificial intelligence software agents based on multi-agent neurocognitive architectures that allow combining the situationality and explanatory power of reinforcement learning and the adaptive efficiency and stability of genetic algorithms. An algorithm for synthesizing the phenotypes of control systems of intelligent agents based on the data of their genotypes has been developed. A software package for simulating the processes of ontophylogenetic synthesis of multi-agent neurocognitive architectures has been also developed. Experiments were carried out to create phenotypes of intelligent agents based on the developed genotypes of control multi-agent neurocognitive architectures.
Keywords: artificial intelligence, multi-agent systems, genetic algorithms, ontophylogenetic learning.
@article{IZKAB_2022_6_a6,
     author = {A. Z. Apshev and B. A. Atalikov and S. A. Kankulov and D. A. Malyshev and Z. A. Sundukov and A. Z. Enes},
     title = {Ontophylogenetic algorithms for the synthesis of intellectual phenotypes},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {76--91},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/}
}
TY  - JOUR
AU  - A. Z. Apshev
AU  - B. A. Atalikov
AU  - S. A. Kankulov
AU  - D. A. Malyshev
AU  - Z. A. Sundukov
AU  - A. Z. Enes
TI  - Ontophylogenetic algorithms for the synthesis of intellectual phenotypes
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2022
SP  - 76
EP  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/
LA  - ru
ID  - IZKAB_2022_6_a6
ER  - 
%0 Journal Article
%A A. Z. Apshev
%A B. A. Atalikov
%A S. A. Kankulov
%A D. A. Malyshev
%A Z. A. Sundukov
%A A. Z. Enes
%T Ontophylogenetic algorithms for the synthesis of intellectual phenotypes
%J News of the Kabardin-Balkar scientific center of RAS
%D 2022
%P 76-91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/
%G ru
%F IZKAB_2022_6_a6
A. Z. Apshev; B. A. Atalikov; S. A. Kankulov; D. A. Malyshev; Z. A. Sundukov; A. Z. Enes. Ontophylogenetic algorithms for the synthesis of intellectual phenotypes. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 76-91. http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/

[1] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2 ed., Williams, Moscow, 2007, 1424 pp. (In Russian)

[2] Z. V. Nagoev, I. A. Pshenokova, K. Ch. Bzhikhatlov, S. A. Kankulov, “Simulation model of an intelligent control system for an agricultural manipulator gripper based on training of multi-agent neurocognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS, 2021, no. 4(102), 28–37 (In Russian) | DOI

[3] K. Ch. Bzhikhatlov, S. A. Kankulov, D. A. Malyshev, Z. V. Nagoev, O. V. Nagoeva, Z. A. Sundukov, “Interactive formation of spatial ontologies of an autonomous robot based on neurocognitive models of semantics”, Materialy, V sbornike:, Materials of the XVI All-Russia scientific-practical conference and the XII youth school-seminar, v. Pp. 147, Rostov-on-Don, 2021, 147–154 (In Russian)

[4] Z. V. Nagoev, I. A. Pshenokova, O. V. Nagoeva, “Automatic reconstruction of the nature and temperament of users based on multi-agent learning of neurocognitive models of the conscious and unconscious based on data on user behavior on the Internet”, News of Kabardino-Balkarian Scientific Center of RAS., 2021, no. 6(104), 66–77 (In Russian) | DOI

[5] Z. V. Nagoev, Z. A. Sundukov, I. A. Pshenokova, V. A. Denisenko, “CAD architecture of distributed artificial intelligence based on self-organizing neurocognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS, 2020, no. 2(94), 40–47 (In Russian) | DOI

[6] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNS RAS, Nal'chik, 2013, 232 pp.

[7] Spector Lee, Stoffel Kilian, Ontogenetic Programming, 1998

[8] Awni Hannun, The Role of Evolution in Machine Intelligence, 2021

[9] https://en.wikipedia.org/wiki/Neuroevolution

[10] Julian Togelius, Tom Schaul, Daan Wierstra, Christian Igel, Faustino Gomez, J-rgen Schmidhuber, “Ontogenetic and Phylogenetic Reinforcement Learning”, Fachbeitrag, 2009, no. 03

[11] A. Fedor [et al.], “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol., 8 (2017) | DOI

[12] Sergey Budaev, Jarl Giske, Sigrunn Eliassen, “AHA: A general cognitive architecture for Darwinian agents”, Biologically Inspired Cognitive Architectures, 25 (2018), 51–57 | DOI

[13] Bellas Francisco, Duro Richard, Fai-a Andres, Souto Daniel, “Multilevel Darwinist Brain (MDB): Artificial Evolution in a Cognitive Architecture for Real Robots”, Autonomous Mental Development, IEEE Transactions on., 2011

[14] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4(54), 46–56 (In Russian)

[15] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI