@article{IZKAB_2022_6_a6,
author = {A. Z. Apshev and B. A. Atalikov and S. A. Kankulov and D. A. Malyshev and Z. A. Sundukov and A. Z. Enes},
title = {Ontophylogenetic algorithms for the synthesis of intellectual phenotypes},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {76--91},
year = {2022},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/}
}
TY - JOUR AU - A. Z. Apshev AU - B. A. Atalikov AU - S. A. Kankulov AU - D. A. Malyshev AU - Z. A. Sundukov AU - A. Z. Enes TI - Ontophylogenetic algorithms for the synthesis of intellectual phenotypes JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 76 EP - 91 IS - 6 UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/ LA - ru ID - IZKAB_2022_6_a6 ER -
%0 Journal Article %A A. Z. Apshev %A B. A. Atalikov %A S. A. Kankulov %A D. A. Malyshev %A Z. A. Sundukov %A A. Z. Enes %T Ontophylogenetic algorithms for the synthesis of intellectual phenotypes %J News of the Kabardin-Balkar scientific center of RAS %D 2022 %P 76-91 %N 6 %U http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/ %G ru %F IZKAB_2022_6_a6
A. Z. Apshev; B. A. Atalikov; S. A. Kankulov; D. A. Malyshev; Z. A. Sundukov; A. Z. Enes. Ontophylogenetic algorithms for the synthesis of intellectual phenotypes. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 76-91. http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a6/
[1] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2 ed., Williams, Moscow, 2007, 1424 pp. (In Russian)
[2] Z. V. Nagoev, I. A. Pshenokova, K. Ch. Bzhikhatlov, S. A. Kankulov, “Simulation model of an intelligent control system for an agricultural manipulator gripper based on training of multi-agent neurocognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS, 2021, no. 4(102), 28–37 (In Russian) | DOI
[3] K. Ch. Bzhikhatlov, S. A. Kankulov, D. A. Malyshev, Z. V. Nagoev, O. V. Nagoeva, Z. A. Sundukov, “Interactive formation of spatial ontologies of an autonomous robot based on neurocognitive models of semantics”, Materialy, V sbornike:, Materials of the XVI All-Russia scientific-practical conference and the XII youth school-seminar, v. Pp. 147, Rostov-on-Don, 2021, 147–154 (In Russian)
[4] Z. V. Nagoev, I. A. Pshenokova, O. V. Nagoeva, “Automatic reconstruction of the nature and temperament of users based on multi-agent learning of neurocognitive models of the conscious and unconscious based on data on user behavior on the Internet”, News of Kabardino-Balkarian Scientific Center of RAS., 2021, no. 6(104), 66–77 (In Russian) | DOI
[5] Z. V. Nagoev, Z. A. Sundukov, I. A. Pshenokova, V. A. Denisenko, “CAD architecture of distributed artificial intelligence based on self-organizing neurocognitive architectures”, News of Kabardino-Balkarian Scientific Center of RAS, 2020, no. 2(94), 40–47 (In Russian) | DOI
[6] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNS RAS, Nal'chik, 2013, 232 pp.
[7] Spector Lee, Stoffel Kilian, Ontogenetic Programming, 1998
[8] Awni Hannun, The Role of Evolution in Machine Intelligence, 2021
[9] https://en.wikipedia.org/wiki/Neuroevolution
[10] Julian Togelius, Tom Schaul, Daan Wierstra, Christian Igel, Faustino Gomez, J-rgen Schmidhuber, “Ontogenetic and Phylogenetic Reinforcement Learning”, Fachbeitrag, 2009, no. 03
[11] A. Fedor [et al.], “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol., 8 (2017) | DOI
[12] Sergey Budaev, Jarl Giske, Sigrunn Eliassen, “AHA: A general cognitive architecture for Darwinian agents”, Biologically Inspired Cognitive Architectures, 25 (2018), 51–57 | DOI
[13] Bellas Francisco, Duro Richard, Fai-a Andres, Souto Daniel, “Multilevel Darwinist Brain (MDB): Artificial Evolution in a Cognitive Architecture for Real Robots”, Autonomous Mental Development, IEEE Transactions on., 2011
[14] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4(54), 46–56 (In Russian)
[15] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI