Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_6_a5, author = {M. I. Anchekov and K. Ch. Bzhikhatlov and Z. V. Nagoev and O. V. Nagoeva and I. A. Pshenokova}, title = {Ontoepisociophylogenetic development}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {61--75}, publisher = {mathdoc}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/} }
TY - JOUR AU - M. I. Anchekov AU - K. Ch. Bzhikhatlov AU - Z. V. Nagoev AU - O. V. Nagoeva AU - I. A. Pshenokova TI - Ontoepisociophylogenetic development JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 61 EP - 75 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/ LA - ru ID - IZKAB_2022_6_a5 ER -
%0 Journal Article %A M. I. Anchekov %A K. Ch. Bzhikhatlov %A Z. V. Nagoev %A O. V. Nagoeva %A I. A. Pshenokova %T Ontoepisociophylogenetic development %J News of the Kabardin-Balkar scientific center of RAS %D 2022 %P 61-75 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/ %G ru %F IZKAB_2022_6_a5
M. I. Anchekov; K. Ch. Bzhikhatlov; Z. V. Nagoev; O. V. Nagoeva; I. A. Pshenokova. Ontoepisociophylogenetic development. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 61-75. http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/
[1] M. I. Anchekov, “Evolutionary learning of multi-agent neural networks”, News of Kabardino-Balkarian Scientific Center of RAS, 2012, no. 2-2 (46), 56–61 (In Russian)
[2] M. I. Anchekov, K. Ch. Bzhikhatlov, A. M. Leshkenov, “High-performance phenotyping sys-tems of agricultural crops”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 19–24 (In Russian) | DOI
[3] M. I. Anchekov, Z. I. Bogotova, I. A. Pshenokova, Z. V. Nagoev, B. R. Shomakhov, “Collaborative breeding system based on a consortium of heterogeneous intelligent agents”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5(109), 25–37 (In Russian) | DOI
[4] R. Doursat, “Organically grown architectures: Creating decentralized, autonomous systems by embryomorphic engineering”, Organic Computing, 2008, 167–200, Springer-Verlag
[5] A. Fedor [et al.], “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol, 8 (2017), 1–15 | DOI
[6] Z. V. Nagoev, “Multiagent recursive cognitive architecture”, Proceedings of the third annual meeting of the BICA Society. Biologically Inspired Cognitive Architectures, Advances in Intelligent Systems and Computing series, Springer, 2012, 247–248
[7] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4(54), 46–56 (In Russian)
[8] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (in Russian)
[9] Z. V. Nagoev, O. V. Nagoeva, Symbol substantiation and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (in Russian)
[10] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI
[11] J. Werfel, R. Nagpal, “Extended stigmergy in collective construction”, IEEE Intelligent Systems, no. 21(2), 20–28