Ontoepisociophylogenetic development
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 61-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the study is to study the possibilities of multi-generational optimization of control systems based on multi-agent neurocognitive architectures to create general artificial intelligence agents capable of independently solving a universal range of tasks in a real environment. The main principles for achieving the adaptive stability of general artificial intelligence agents based on multi-agent neurocognitive architectures to the operating conditions based on ontophylogenetic learning in the process of synthesis of problem solving over dynamic decision trees are developed. The basic principles for constructing algorithms for multi-generational optimization of the structural and functional organization of general artificial intelligence agents based on multi-agent neurocognitive architectures, taking into account genetic, ontological and social factors, have been developed.
Keywords: general artificial intelligence, multi-agent systems, genetic algorithms, cognitive architectures, ontophylogenetic learning
Mots-clés : artificial neurons.
@article{IZKAB_2022_6_a5,
     author = {M. I. Anchekov and K. Ch. Bzhikhatlov and Z. V. Nagoev and O. V. Nagoeva and I. A. Pshenokova},
     title = {Ontoepisociophylogenetic development},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {61--75},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/}
}
TY  - JOUR
AU  - M. I. Anchekov
AU  - K. Ch. Bzhikhatlov
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - I. A. Pshenokova
TI  - Ontoepisociophylogenetic development
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2022
SP  - 61
EP  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/
LA  - ru
ID  - IZKAB_2022_6_a5
ER  - 
%0 Journal Article
%A M. I. Anchekov
%A K. Ch. Bzhikhatlov
%A Z. V. Nagoev
%A O. V. Nagoeva
%A I. A. Pshenokova
%T Ontoepisociophylogenetic development
%J News of the Kabardin-Balkar scientific center of RAS
%D 2022
%P 61-75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/
%G ru
%F IZKAB_2022_6_a5
M. I. Anchekov; K. Ch. Bzhikhatlov; Z. V. Nagoev; O. V. Nagoeva; I. A. Pshenokova. Ontoepisociophylogenetic development. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 61-75. http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a5/

[1] M. I. Anchekov, “Evolutionary learning of multi-agent neural networks”, News of Kabardino-Balkarian Scientific Center of RAS, 2012, no. 2-2 (46), 56–61 (In Russian)

[2] M. I. Anchekov, K. Ch. Bzhikhatlov, A. M. Leshkenov, “High-performance phenotyping sys-tems of agricultural crops”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5 (109), 19–24 (In Russian) | DOI

[3] M. I. Anchekov, Z. I. Bogotova, I. A. Pshenokova, Z. V. Nagoev, B. R. Shomakhov, “Collaborative breeding system based on a consortium of heterogeneous intelligent agents”, News of Kabardino-Balkarian Scientific Center of RAS, 2022, no. 5(109), 25–37 (In Russian) | DOI

[4] R. Doursat, “Organically grown architectures: Creating decentralized, autonomous systems by embryomorphic engineering”, Organic Computing, 2008, 167–200, Springer-Verlag

[5] A. Fedor [et al.], “Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem”, Front. Psychol, 8 (2017), 1–15 | DOI

[6] Z. V. Nagoev, “Multiagent recursive cognitive architecture”, Proceedings of the third annual meeting of the BICA Society. Biologically Inspired Cognitive Architectures, Advances in Intelligent Systems and Computing series, Springer, 2012, 247–248

[7] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4(54), 46–56 (In Russian)

[8] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Izdatel'stvo KBNTS RAN, Nalchik, 2013, 232 pp. (in Russian)

[9] Z. V. Nagoev, O. V. Nagoeva, Symbol substantiation and multi-agent neurocognitive models of natural language semantics, Izdatel'stvo KBNTS RAN, Nalchik, 2022, 150 pp. (in Russian)

[10] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI

[11] J. Werfel, R. Nagpal, “Extended stigmergy in collective construction”, IEEE Intelligent Systems, no. 21(2), 20–28