On the Mellin–Barnes integral representation
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the Mellin–Barnes integral representation of a special function that arises in the theory of boundary value problems for parabolic equations with a Bessel operator and a fractional time derivative. The convergence of such an integral is investigated. The expansion of the considered function into power series and asymptotic formulas for large and small values of the argument is given. For particular values of the parameters of the function under consideration, some well-known elementary and special functions are obtained.
Keywords: Mellin–Barnes integral, hypergeometric function, gamma function.
@article{IZKAB_2022_6_a1,
     author = {F. G. Khushtova},
     title = {On the {Mellin{\textendash}Barnes} integral representation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {19--27},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a1/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - On the Mellin–Barnes integral representation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2022
SP  - 19
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a1/
LA  - ru
ID  - IZKAB_2022_6_a1
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T On the Mellin–Barnes integral representation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2022
%P 19-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a1/
%G ru
%F IZKAB_2022_6_a1
F. G. Khushtova. On the Mellin–Barnes integral representation. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2022), pp. 19-27. http://geodesic.mathdoc.fr/item/IZKAB_2022_6_a1/

[1] H. Bateman, A. Erdeyi, Higher transcendental functions, v. 1, Nauka, Moscow, 1965, 296 pp. (In Russian) | MR

[2] O. I. Marichev, Method for calculating integrals of special functions (theory and tables of formulas), Nauka i tekhnika, Minsk, 1978, 312 pp. (In Russian) | MR

[3] A. M. Nahushev, Fractional calculus and its application, Fizmatilit, Moscow, 2003, 272 pp. (In Russian)

[4] F. G. Khushtova, “First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann-Liouville Derivative”, Mathematical Notes, 99:6 (2016), 916–923 (In Russian) | MR

[5] F. G. Khushtova, “The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann-Liouville Partial Derivative”, Mathematical Notes, 103:3 (2018), 474–482 (In Russian) | MR

[6] E. W. Barnes, “A new development of the theory of the hypergeometric functions”, Proc. London Math. Soc., s2-6 (1908), 141–177 | DOI | MR

[7] E. W. Barnes, “A transformation of generalised hypergeometric series”, Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 136–140

[8] C. Fox, “The G and H Functions as Symmetrical Fourier kernels”, Trans. Amer. Math. Soc., 98:3 (1961), 395–429 | MR

[9] A. A. Kilbas, M. Saigo, H-Transforms: Theory and Applications., CRC Press, 2004, 389 pp. | MR

[10] Y. L. Luke, The special functions and their approximations, v. I, Acad. Press., New York London, 1969, 349 pp. | MR

[11] Y. L. Luke, The special functions and their approximations, v. II, Acad. Press, New York London, 1969, 485 pp. | MR

[12] F. Mainardi, G. Pagnini, “Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals”, Journal of Computational and Applied Mathematics, 153 (2003), 331–342 | DOI | MR

[13] A. M. Mathai, R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lect. Notes Math., 1973, 348 pp. | DOI | MR

[14] A. M. Mathai, R. K. Saxena, H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, 2010, 268 pp. | MR

[15] H. Mellin, “Abriss einer einheitlichen Theorie der Gamma und der Hypergeometrischen Funktionen”, Mathematische Annalen, 68 (1910), 305–337 | DOI | MR

[16] R. B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, New York, 2001, 422 pp. | MR

[17] E. M. Wright, “The generalized Bessel function of order greater than one”, The Quarterly Journal of Mathematics, os-11:1 (1940), 36–48 | DOI | MR