Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_5_a6, author = {I. A. Pshenokova and O. V. Nagoeva and A. Z. Apshev and A. Z. Enes}, title = {Formation of dynamic cause-and-effect relationships when controlling}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {73--80}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a6/} }
TY - JOUR AU - I. A. Pshenokova AU - O. V. Nagoeva AU - A. Z. Apshev AU - A. Z. Enes TI - Formation of dynamic cause-and-effect relationships when controlling JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 73 EP - 80 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a6/ LA - ru ID - IZKAB_2022_5_a6 ER -
%0 Journal Article %A I. A. Pshenokova %A O. V. Nagoeva %A A. Z. Apshev %A A. Z. Enes %T Formation of dynamic cause-and-effect relationships when controlling %J News of the Kabardin-Balkar scientific center of RAS %D 2022 %P 73-80 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a6/ %G ru %F IZKAB_2022_5_a6
I. A. Pshenokova; O. V. Nagoeva; A. Z. Apshev; A. Z. Enes. Formation of dynamic cause-and-effect relationships when controlling. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2022), pp. 73-80. http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a6/
[1] D. Danks, Unifying the mind: Cognitive representations as graphical models, MIT Press, 2014, 304 pp.
[2] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, “Building machines that learn and think like people”, Behavioral and Brain Sciences, 40 (2017) | DOI
[3] J. Pearl, D. Mackenzie, The Book of Why: The New Science of Cause and Effect. Basic Books, 2018, 432 pp. | MR
[4] J. Von Neumann, O. Morgenstern, Theory of games, economic behavior, Princeton University Press, 1944, 776 pp. | MR
[5] L. Savage, The Foundations of Statistics, John Wiley Sons., New York, 1954, 310 pp. | MR
[6] J. M. Bernardo, A. F. M. Smith, Bayesian theory, Wiley Series in Probability and Statistics, 2000, 608 pp. | MR
[7] I. Gilboa, Theory of Decision under Uncertainty, Cambridge University Press, 2009, 230 pp. | MR
[8] M. Peterson, An Introduction to Decision Theory, Cambridge University Press, 2017, 348 pp. | MR
[9] P. Spirtes, C. N. Glymour, R. Scheines, Causation, prediction, and search, MIT press, 2000, 546 pp. | MR
[10] J. Pearl, “Theoretical impediments to machine learning with seven sparks from the causal revolution”, Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, v. 3, 2018 | DOI
[11] J. Woodward, Making things happen: A theory of causal explanation, Oxford Studies in Philosophy of Science, Oxford University Press, 2003, 432 pp. | MR
[12] K. Friston, “The free-energy principle: a unified brain theory?”, Nature Reviews Neuro science, 2010, 127–138 pp.
[13] J. Hohwy, The predictive mind, Oxford University Press, 2013, 288 pp.
[14] A. Clark, Surfing uncertainty: Prediction, action, and the embodied mind, Oxford University Press, 2015, 424 pp.
[15] D. Danks, Unifying the mind: Cognitive representations as graphical models, MIT Press, 2014, 304 pp.
[16] L. E. Gonzalez-Soto, H. J. Sucar, Escalante Playing against Nature: causal discovery for decision making under uncertainty, 2018 | DOI
[17] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Publishing House of KBSC of RAS, Nalchik, 2013, 213 pp. (in Russian)
[18] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI
[19] P. K. Anokhin, Key questions of the theory of functional systems, Science, Moscow, 1980, 203 pp. (in Russian)
[20] Z. Nagoev, I. Pshenokova, O. Nagoeva, S. Kankulov, “Situational analysis model in an intelligent system based on multi-agent neurocognitive architectures”, Journal of Physics: Conference Series, 2131 (2021) | DOI
[21] Z. V. Nagoev, “Ontoneuromorphogenetic modeling”, News of the Kabardino-Balkarian Scientific Center of RAS, 2013, no. 4 (54), 56–63 (in Russian)
[22] Z. V. Nagoev, I. A. Pshenokova, S. A. Kankulov, B. A. Atalikov, A. A. Airan, “Formal model of multi-agent search for the optimal plan of behavior of an intelligent agent based on selforganization of distributed neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of RAS, 2021, no. 3 (101), 21–31 (in Russian) | DOI