Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_5_a4, author = {E. M. Kazakova}, title = {Application of particle swarm method in the optimization problems}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {48--57}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a4/} }
E. M. Kazakova. Application of particle swarm method in the optimization problems. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2022), pp. 48-57. http://geodesic.mathdoc.fr/item/IZKAB_2022_5_a4/
[1] R. Eberhart, J. Kennedy, “Particle swarm optimization”, Proceedings of the IEEE International Conference on Neural Networks, 1995, no. 4, 1942-1948 | DOI
[2] R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, 39-43 | DOI
[3] C. W. Cleghorn, A. P. Engelbrecht, “Particle swarm convergence: An empirical investigation”, 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, 2524-2530 | DOI
[4] A. Banks, J. Vincent, C. Anyakoha, “A review of particle swarm optimization. Part I: backgroundand development”, Nat. Comput., 4:6 (2007), 467-484 | DOI | MR
[5] A. P. Karpenko, E. Yu. Seliverstov, “A review of particle swarm methods for the global optimization problem (Particle Swarm Optimization)”, Mechanical Engineering and Computer Technologies, 2009, no. 3, 2 (in Russian) | MR
[6] E. H. Houssein, M. R. Saad, F. A. Hashim, H. Shaban, M. Hassaballah, “Levy flight distribution:a new metaheuristic algorithm for solving engineering optimization problems”, Eng. Appl. Artif. Intell, 94 (2020), 103731 | DOI
[7] P. Cazzaniga, M. S. Nobile, D. Besozzi, “The impact of particles initialization in PSO: parameter estimation as a case in point”, IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 94 (2015), 1–8 | DOI
[8] M. U. Farooq, A. Ahmad, A. Hameed, “Opposition-based initialization and a modified pattern for inertia weight (IW) in PSO”, IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA), 2017, 96–101 | DOI
[9] J. Shang [et al.], “Hybrid Odor Detection System for Search and Rescue Robot Based on PSO”, Chemical Engineering Transactions, 68 (2018), 151–156
[10] A. Asma, B. Sadok, “PSO-based dynamic distributed algorithm for automatic task clustering in a robotic swarm”, Procedia Computer Science, 159 (2019), 1103–1112 | DOI
[11] Z. Bingul, O. Karahan, “Tuning of fractional PID controllers using PSO algorithm for robot trajectory control”, IEEE International Conference on Mechatronics, 2011, 955–960 | DOI
[12] K. Aurangzeb, S. Aslam, M. Alhussein, R. A. Naqvi, M. Arsalan, S. I. Haider, “Contrast Enhancement of Fundus Images by Employing Modified PSO for Improving the Performance of Deep Learning Models”, IEEE Access, 9 (2021), 47930–47945 | DOI
[13] Taijia Xiao, Dong Ren, Shuanghui Lei, Junqiao Zhang, Xiaobo Liu, “Based on grid-search and PSO parameter optimization for Support Vector Machine”, Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014, 1529–1533 | DOI
[14] N. Zeng [et al.], “A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease”, Neurocomputing, 320 (2018), 195–202 | DOI
[15] A. Dixit, A. Mani, R. Bansal, “CoV2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images”, Information sciences, 571 (2021), 676–692 | DOI | MR
[16] S. O. Prakash, M. Jeyakumar, B. S. Gandhi, “Parametric optimization on electro chemical machining process using PSO algorithm”, Materials Today: Proceedings, 2022 | DOI
[17] V. Z. Manusov, P. V. Matrenin, H. Nasrullo, “Application of swarm intelligence algorithms in the management of a generating consumer with renewable energy sources”, Systems of Analysis and Data Processing, 76:3 (2019), 115–134 (in Russian) | DOI