The inverse problem of determining the source depending
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2022), pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the proof of the existence and uniqueness of the solution of the inverse problem of determining the source for a hyperbolic equation of the third order. An inverse problem is posed, which consists in determining an unknown source that depends on spatial variables. As additional information for solving the inverse problem, the values of the solution of the problem at the interior point are given. The proof is based on the derivation of a linear system of Volterra integral equations of the second kind with respect to an unknown source.
Keywords: hyperbolic equation, inverse problem, source function, uniqueness, redefinition.
Mots-clés : existence, Volterra equation
@article{IZKAB_2022_4_a0,
     author = {B. S. Ablabekov and A. K. Goroev},
     title = {The inverse problem of determining the source depending},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {11--18},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/}
}
TY  - JOUR
AU  - B. S. Ablabekov
AU  - A. K. Goroev
TI  - The inverse problem of determining the source depending
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2022
SP  - 11
EP  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/
LA  - ru
ID  - IZKAB_2022_4_a0
ER  - 
%0 Journal Article
%A B. S. Ablabekov
%A A. K. Goroev
%T The inverse problem of determining the source depending
%J News of the Kabardin-Balkar scientific center of RAS
%D 2022
%P 11-18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/
%G ru
%F IZKAB_2022_4_a0
B. S. Ablabekov; A. K. Goroev. The inverse problem of determining the source depending. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2022), pp. 11-18. http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/

[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Applied mathematics and mechanic, 24:5 (1960), 58–73 (in Russian)

[2] M. Hallaire, “L-eau et la productions vegetable”, Institut National de la Recherche Agronomique, 1964, no. 9

[3] A. F. Chudnovsky, Thermophysics of the soil, Moscow, Nauka, 1976, 352 pp. (in Russian)

[4] E. S. Dzektser, “Equation of motion of underground water with a free surface in multilayer media”, Doklady Soviet Mathematics, 220:3 (1975), 540–543 (in Russian) | Zbl

[5] O. V. Rudenko, S. I. Soluyan, Theoretical Principles of Nonlinear Acoustics, Mos cow, Nauka, 1975 (in Russian) | MR

[6] V. G. Romanov, Inverse Problems of Mathemati cal Physics, Nauka, Moscow, 1984, 264 pp. (in Russian) | MR

[7] V. G. Romanov, Stability in inverse problems, Nauchnyy mir, Moscow, 2005 (in Russian) | MR

[8] S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, Berlin, 2011 | MR

[9] Yu. Ya. Belov, Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl

[10] M. Ivanchov, Inverse problems for equations of parabolic type, Mathematical studies. Monograph Series, 2003 | MR

[11] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathe matical physics, Marcel Dekker, New York, 2000 | MR | Zbl

[12] B. S. Ablabekov, Inverse problems for pseudoparabolic equations, Ilim, Bishkek, 2001, 183 pp. (In Russian)

[13] B. S. Ablabekov, A. R. Asanov, A. K. Kurmanbaeva, Inverse problems for equation of the third order, Ilim, Bishkek, 2011, 156 pp. (In Russian)

[14] B. S. Ablabekov, A. K. Joroev, “On the definition of time-dependent minor coefficient in the third-order hyperbolic equation”, Vestnik KRAUNC. Fiziko-matematicheskie nauki (Physics and mathematics), 2021, no. 1, 9–18 (in Russian) | MR | Zbl

[15] B. S. Ablabekov, A. K. Joroev, “On determining the source of the time-dependent third-order hyperbolic equation”, Eurasian Scientific Asso ciation, 1:7 (77) (2021), 1–3 (In Russian)