Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_4_a0, author = {B. S. Ablabekov and A. K. Goroev}, title = {The inverse problem of determining the source depending}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {11--18}, publisher = {mathdoc}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/} }
TY - JOUR AU - B. S. Ablabekov AU - A. K. Goroev TI - The inverse problem of determining the source depending JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 11 EP - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/ LA - ru ID - IZKAB_2022_4_a0 ER -
B. S. Ablabekov; A. K. Goroev. The inverse problem of determining the source depending. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2022), pp. 11-18. http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/
[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Applied mathematics and mechanic, 24:5 (1960), 58–73 (in Russian)
[2] M. Hallaire, “L-eau et la productions vegetable”, Institut National de la Recherche Agronomique, 1964, no. 9
[3] A. F. Chudnovsky, Thermophysics of the soil, Moscow, Nauka, 1976, 352 pp. (in Russian)
[4] E. S. Dzektser, “Equation of motion of underground water with a free surface in multilayer media”, Doklady Soviet Mathematics, 220:3 (1975), 540–543 (in Russian) | Zbl
[5] O. V. Rudenko, S. I. Soluyan, Theoretical Principles of Nonlinear Acoustics, Mos cow, Nauka, 1975 (in Russian) | MR
[6] V. G. Romanov, Inverse Problems of Mathemati cal Physics, Nauka, Moscow, 1984, 264 pp. (in Russian) | MR
[7] V. G. Romanov, Stability in inverse problems, Nauchnyy mir, Moscow, 2005 (in Russian) | MR
[8] S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, Berlin, 2011 | MR
[9] Yu. Ya. Belov, Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl
[10] M. Ivanchov, Inverse problems for equations of parabolic type, Mathematical studies. Monograph Series, 2003 | MR
[11] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathe matical physics, Marcel Dekker, New York, 2000 | MR | Zbl
[12] B. S. Ablabekov, Inverse problems for pseudoparabolic equations, Ilim, Bishkek, 2001, 183 pp. (In Russian)
[13] B. S. Ablabekov, A. R. Asanov, A. K. Kurmanbaeva, Inverse problems for equation of the third order, Ilim, Bishkek, 2011, 156 pp. (In Russian)
[14] B. S. Ablabekov, A. K. Joroev, “On the definition of time-dependent minor coefficient in the third-order hyperbolic equation”, Vestnik KRAUNC. Fiziko-matematicheskie nauki (Physics and mathematics), 2021, no. 1, 9–18 (in Russian) | MR | Zbl
[15] B. S. Ablabekov, A. K. Joroev, “On determining the source of the time-dependent third-order hyperbolic equation”, Eurasian Scientific Asso ciation, 1:7 (77) (2021), 1–3 (In Russian)