The inverse problem of determining the source depending
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2022), pp. 11-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is devoted to the proof of the existence and uniqueness of the solution of the
inverse problem of determining the source for a hyperbolic equation of the third order. An inverse problem is posed, which consists in determining an unknown source that depends on spatial variables. As additional information for solving the inverse problem, the values of the solution of the problem at the interior point are given. The proof is based on the derivation of a linear system of Volterra integral equations
of the second kind with respect to an unknown source.
Keywords:
hyperbolic equation, inverse problem, source function, uniqueness, redefinition.
Mots-clés : existence, Volterra equation
Mots-clés : existence, Volterra equation
@article{IZKAB_2022_4_a0,
author = {B. S. Ablabekov and A. K. Goroev},
title = {The inverse problem of determining the source depending},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {11--18},
publisher = {mathdoc},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/}
}
TY - JOUR AU - B. S. Ablabekov AU - A. K. Goroev TI - The inverse problem of determining the source depending JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 11 EP - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/ LA - ru ID - IZKAB_2022_4_a0 ER -
B. S. Ablabekov; A. K. Goroev. The inverse problem of determining the source depending. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2022), pp. 11-18. http://geodesic.mathdoc.fr/item/IZKAB_2022_4_a0/