Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_3_a0, author = {I. D. Morgoev and A. E. Dzgoev and R. V. Klyuev and A. D. Morgoeva}, title = {Forecasting the consumption of electricity by enterprises}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {9--20}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_3_a0/} }
TY - JOUR AU - I. D. Morgoev AU - A. E. Dzgoev AU - R. V. Klyuev AU - A. D. Morgoeva TI - Forecasting the consumption of electricity by enterprises JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 9 EP - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_3_a0/ LA - ru ID - IZKAB_2022_3_a0 ER -
%0 Journal Article %A I. D. Morgoev %A A. E. Dzgoev %A R. V. Klyuev %A A. D. Morgoeva %T Forecasting the consumption of electricity by enterprises %J News of the Kabardin-Balkar scientific center of RAS %D 2022 %P 9-20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2022_3_a0/ %G ru %F IZKAB_2022_3_a0
I. D. Morgoev; A. E. Dzgoev; R. V. Klyuev; A. D. Morgoeva. Forecasting the consumption of electricity by enterprises. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2022), pp. 9-20. http://geodesic.mathdoc.fr/item/IZKAB_2022_3_a0/
[1] V. N. Volkova, Kozlov V. N., System analysis, decision-making, Vvsshaja shkola, Moskva, 2004, 616 pp. (In Russian)
[2] I. D. Morgoev, A. E. Dzgoev, R. V. Klyuev et al., “Modern ways to combat commercial losses in the electric power industry”, Energy of the future digital transformation, Proceedings of the 2nd Scientific-practical conference, LGTU, Lipeck, 2021, 181–185 (In Russian)
[3] D. V. Antonenkov, P. V. Matrenin, “Ensemble and neural network machine learning models for short-term load forecasting of open cast mining companies”, Electrotechnical systems and complexes, 2021, no. 3 (52), 57–65 (In Russian) | DOI
[4] N. A. Serebryakov, “Analysis of factors affecting the electricity consumption of a delivery point cluster default provider”, Proceedings of Irkutsk State Technical University, 2020, no. 2 (151), 366–381 (In Russian) | DOI
[5] A. D. Morgoeva, I. D. Morgoev, R. V. Klyuev, V. I. Lyashenko, “Forecasting the load on the power grid as a way to effectively manage the consumption of electrical energy”, News of Higher Educational Institutions of the Chernozem Region, 2021, no. 4 (66), 39–51 (In Russian) | DOI
[6] Alfonso Gonzalez-Briones, Sigeru Omatu, Mohd Saberi Mohamad, “Machine Learning Models for Electricity Consumption Forecasting: A Review”, 2nd International Conference on Computer Applications Information Security (ICCAIS) (Riyadh, Saudi Arabia), IEEE, 2019 | DOI | MR
[7] Dougherty C., Introduction to econometrics, Oxford University Press, New York, 1999, 402 pp.
[8] S. Rashka, V. Mirdzhalili, Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, Packt, Birmingham, Mumbai, 2020, 848 pp.
[9] C. Albon, Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, Beijing–Boston–Farnham–Sebastopol–Tokyo, 2019, 384 pp.