Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2022_2_a4, author = {E. P. Okhapkina and V. P. Okhapkin and R. V. Mescheriakov and A. O. Iskhakova and A. Yu. Iskhakov}, title = {Dynamic system of functioning of social network communities}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {41--71}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_2_a4/} }
TY - JOUR AU - E. P. Okhapkina AU - V. P. Okhapkin AU - R. V. Mescheriakov AU - A. O. Iskhakova AU - A. Yu. Iskhakov TI - Dynamic system of functioning of social network communities JO - News of the Kabardin-Balkar scientific center of RAS PY - 2022 SP - 41 EP - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2022_2_a4/ LA - ru ID - IZKAB_2022_2_a4 ER -
%0 Journal Article %A E. P. Okhapkina %A V. P. Okhapkin %A R. V. Mescheriakov %A A. O. Iskhakova %A A. Yu. Iskhakov %T Dynamic system of functioning of social network communities %J News of the Kabardin-Balkar scientific center of RAS %D 2022 %P 41-71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2022_2_a4/ %G ru %F IZKAB_2022_2_a4
E. P. Okhapkina; V. P. Okhapkin; R. V. Mescheriakov; A. O. Iskhakova; A. Yu. Iskhakov. Dynamic system of functioning of social network communities. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2022), pp. 41-71. http://geodesic.mathdoc.fr/item/IZKAB_2022_2_a4/
[1] M. A. Tocoglu, O. Ozturkmenoglu, A. Alpkocak, “Emotion Analysis From Turkish Tweets Using Deep Neural Networks”, IEEE Access, 7 (2019), 183061–183069 | DOI
[2] A. Kumar, V. T. Narapareddy, V. Aditya Srikanth et al., “Sarcasm Detection Using MultiHead Attention Based Bidirectional LSTM”, IEEE Access, 8 (2020), 6388–6397 | DOI
[3] Y. Dong, Y. Fu, Wang L et al., “A Sentiment Analysis Method of Capsule Network Based on BiLSTM”, IEEE Access, 8 (2020), 37014–37020 | DOI
[4] H. Liang, U. Ganeshbabu, T. Thorne, “A Dynamic Bayesian Network Approach for Analysing Topic-Sentiment Evolution”, IEEE Access, 8 (2020), 54164–54174 | DOI
[5] A. Kumar, V. T. Narapareddy, V. Aditya Srikanth et al, “Aspect-Based Sentiment Classification Using Interactive Gated Convolutional Network”, IEEE Access, 8 (2020), 22445–22453 | DOI
[6] W. Ding, “SVM-Based Feature Selection for Differential Space Fusion and Its Application to Diabetic Fundus Image Classification”, IEEE Access, 7 (2019), 149493–149502 | DOI
[7] M. Li, H. Wu, H. Zhang, “Matrix Factorization for Personalized Recommendation with Implicit Feedback and Temporal Information in Social Ecommerce Networks”, IEEE Access, 7 (2019), 141268–141276 | DOI
[8] J. Xu, Z. Xu, J. Chen, “Semantic retrieval system based on ontology”, Proceedings of the 5th WSEAS International Conference on Information Security and Privacy, World Scientific and Engineering Academy and Society, Stevens Point, Wisconsin, USA, 2006, 124–129
[9] Y. Zhao, S. Pan, J. Wu et al., “IEEE Access Special Section Editorial: Advanced Data Mining Methods for Social Computing”, IEEE Access, 8 (2020), 228598–228604 | DOI
[10] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, Moskva, 1980, 300 pp. | MR
[11] S. A. Tsimfer, “Otsenka parametrov perekhodnogo protsessa lineinoi sistemy na osnove pryamogo metoda Lyapunova”, Protsessy upravleniya i ustoichivost, 3:1 (2016), 138–143
[12] B. S. Kalitine, “On solving the problems of stability by Lyapunov's direct method”, Russian Mathematics, 61:6 (2017), 27–36 | DOI | MR | Zbl
[13] D. R. Gulyaeva, A. V. Kiselev, “Primenenie metodov Lyapunova dlya issledovaniya ustoichivosti sistem”, Informatsionnye sistemy i tekhnologii, materialy dokladov II mezhdunarodnoi nauchno-tekhnicheskoi zaochnoi konferentsii «IST-2016», Yugo-Zapadnyi gosudarstvennyi universitet, Kursk, 2016, 40–44
[14] T. Yu. Plyusnina, P. V. Fursova, A. N. Dyakonova i dr., Matematicheskie modeli v biologii, uchebnoe posobie, NITs: Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2021, 174 pp.
[15] I. V. Schurov, Obyknovennye differentsialnye uravneniya, Interaktivnyi uchebnik, (data obrascheniya: 25.09.2020) https://ode.mathbook.info/
[16] F. P. Vasilev, Chislennye metody resheniya ekstremalnykh zadach, Nauka, Moskva, 1988, 552 pp. | MR
[17] I. M. Yakimov, A. P. Kirpichnikov, R. D. Ustinov i dr, “Imitatsionnoe modelirovanie v sisteme strukturnogo i imitatsionnogo modelirovaniya Ithink-”, Vestnik Tekhnologicheskogo universiteta, 22:2 (2019), 159–164
[18] V. A. Minaev, M. P. Sychev, L. S. Kulikov i dr, “Modelirovanie manipulyativnykh vozdeistvii v sotsialnykh setyakh”, Modelirovanie, optimizatsiya i informatsionnye tekhnologii, 7:1 (24) (2019), 494–510 | DOI
[19] V. A. Minaev, S. V. Dvoryankin, “Obosnovanie i opisanie modeli dinamiki informatsionno-psikhologicheskikh vozdeistvii destruktivnogo kharaktera v sotsialnykh setyakh”, Bezopasnost informatsionnykh tekhnologii, 23:3 (2016), 40–52
[20] X. Cheng, S. Fu, G. J. de Vreede, “Understanding trust influencing factors in social media communication: A qualitative study”, International Journal of Information Management, 37:2 (2017), 25–35 | DOI