@article{IZKAB_2022_1_a0,
author = {K. N. Anakhaev},
title = {Length of lemniscata {Bernoulli} arc},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {5--11},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2022_1_a0/}
}
K. N. Anakhaev. Length of lemniscata Bernoulli arc. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2022), pp. 5-11. http://geodesic.mathdoc.fr/item/IZKAB_2022_1_a0/
[1] N. V. Aleksandrova, Mathematical terms, Vysshaya shkola, Moscow, 1978, 190 pp. (In Russian) | MR
[2] I. I. Bronstein, K. A. Semendyaev, Handbook of mathematics, Nauka, M., 1980, 975 pp. (In Russian)
[3] G. M. Fikhtengolts, Course of differential and integral calculus, v. 2, Nauka, M., 1969, 800 pp. (In Russian)
[4] E. Yanke, F. Emde, F. Lesh, Special functions, Nauka, M., 1977, 342 pp. (In Russian)
[5] L. Milne-Thomson, Elliptic integrals. Reference book on special functions, eds. Abramowitz M., I. Stegun, Nauka, M., 1979, 401–441 pp.
[6] K. N. Anakhaev, “On methods of calculating potential (seepage) flows on the basis of Jacobi elliptic integrals”, Power Technology and Engineering, 42:5 (2008), 273–276 | DOI
[7] K. N. Anakhaev, “Complete elliptic integrals of the third kind in problems of mechanics”, Doklady Physics, 62:3 (2017), 133–135 | DOI | MR
[8] K. N. Anakhaev, “Elliptic integrals in nonlinear problems of mechanics”, Doklady Physics. Physics Reports, 65:4 (2020), 142–146 | DOI