Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2021_6_a6, author = {E. O. Cherskikh and A. I. Saveliev}, title = {Analysis and classification of distributed sensor}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {78--94}, publisher = {mathdoc}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/} }
E. O. Cherskikh; A. I. Saveliev. Analysis and classification of distributed sensor. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2021), pp. 78-94. http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/
[1] A. Levratti, G. Riggio, C. Fantuzzi, A. De Vuono, C. Secchi, “TIREBOT:”, A collaborative robot for the tire workshop, Robotics and Computer-Integrated Manufacturing, 57, 2019, 129–137 | DOI
[2] C. Byner, B. Matthias, H. Ding, “Dynamic speed and separation monitoring for collaborative robot applications concepts and performance”, Robotics and Computer-Integrated Manufacturing, 58 (2019), 239–252 | DOI
[3] A. Kanazawa, J. Kinugawa, K. Kosuge, “Adaptive motion planning for a collaborative robot based on prediction uncertainty to enhance human safety and work efficiency”, IEEE Transactions on Robotics, 35:4 (2019), 817–832 | DOI
[4] J. Mainprice, D. Berenson, “Human-robot collaborative manipulation planning using early prediction of human motion”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, 299–306 | DOI
[5] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, B. Matthias, “Safety in human-robot collaborative manufacturing environments: Metrics and control”, IEEE Transactions on Automation Science and Engineering, 13:2 (2015), 882–893 | DOI | MR
[6] G. Dumonteil, G. Manfredi, M. Devy, A. Confetti, D. Sidobre, “Reactive planning on a collaborative robot for industrial applications”, 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), v. 2, 2015, 450–457 pp. | Zbl
[7] E. Magrini, F. Flacco, A. De Luca, “Control of generalized contact motion and force in physical human-robot interaction”, 2015 IEEE international conference on robotics and automation (ICRA), 2015, 2298–2304 | DOI
[8] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, “Collaborative manufacturing with physical human-robot interaction”, Robotics and Computer-Integrated Manufacturing, 40 (2016), 1–13 | DOI
[9] S. Tsuji, T. Kohama, “Proximity skin sensor using time-of-flight sensor for human collaborative robot”, IEEE Sensors Journal, 19:14 (2019), 5859–5864 | DOI
[10] P. Francesco, G. G. Paolo, “AURA: An example of collaborative robot for automotive and general industry applications”, Procedia Manufacturing, 11 (2017), 338–345 | DOI
[11] A. Albini, S. Denei, G. Cannata, “Human hand recognition from robotic skin measurements in human-robot physical interactions”, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, 4348–4353 | DOI
[12] G. Cannata, M. Maggiali, G. Metta, G. Sandini, “An embedded artificial skin for humanoid robots”, 2008 IEEE International conference on multisensor fusion and integration for intelligent systems, 2008, 434–438 | DOI
[13] A. Albini, S. Denei, G. Cannata, “Enabling natural human-robot physical interaction using a robotic skin feedback and a prioritized tasks robot control architecture”, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, 99–106 | DOI
[14] S. K. Das, I. Wijayasighe, M. N. Saadatzi, D. O. Popa, “Whole body human-robot collision detection using base-sensor neuroadaptive interaction”, 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018, 278–283 | DOI
[15] T. Yoshikai, M. Hayashi, Y. Ishizaka, H. Fukushima, A. Kadowaki, T. Sagisaka, K. Kobayashi, I. Kumagai, M. Inaba, “Development of robots with soft sensor flesh for achieving close interaction behavior”, Advances in Artificial Intelligence, 2012 | DOI
[16] A. Kadowaki, T. Yoshikai, M. Hayashi, M. Inaba, “Development of soft sensor exterior embedded with multi-axis deformable tactile sensor system”, RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009, 1093–1098 | DOI
[17] I. Kumagai, K. Kobayashi, S. Nozawa, Y. Kakiuchi, T. Yoshikai, K. Okada, M. Inaba, “Development of a full body multi-axis soft tactile sensor suit for life sized humanoid robot and an algorithm to detect contact states”, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 2012, 526–531 | DOI
[18] M. Hautefeuille, B. O-Flynn, F. H. Peters, C. O-Mahony, “Development of a microelectromechanical system (MEMS)-based multisensor platform for environmental monitoring”, Micromachines, 2:4 (2011), 410–430 | DOI
[19] C. L. Roozeboom, J. Y. Sim, D. Wickeraad, B. Dura, W. S. Smith, Hopcrof, M. A., P. G. Hartwell, R. S. Williams, B. L. Pruitt, “Multi-functional integrated sensors for the environment”, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 144–147 | DOI
[20] C. L. Roozeboom, V. A. Hong, C. H. Ahn, E. J. Ng, Y. Yang, B. E. Hill, M. A. Hopcroft, B. L. Pruitt, “Multifunctional integrated sensor in A 2- 2 mm epitaxial sealed chip operating in a wireless sensor node”, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014, 773–776 | DOI
[21] Z. Ni, Yang, C., D. Xu, H. Zhou, W. Zhou, T. Li, B. Xiong, X. Li, “Monolithic compositesensors designed and fabricated by a low-cost single-sideSiN/poly-Si/Al-multi-user processmodule for versatile sensing-network nodes”, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013, 697–700 | DOI
[22] Z. Ni, Yang, C., D. Xu, H. Zhou, W. Zhou, T. Li, B. Xiong, X. Li, “Monolithic CompositePressure+ Acceleration+ Temperature+ Infrared- Sensor Using a Versatile Single-Sided -SiN/Poly-Si/Al- Process-Module”, Sensors, 13:1 (2013), 1085–1101 | DOI
[23] Z. Xu, Koltsov, D., A. Richardson, L. Le, M. Begbie, “Design and simulation of a multifunction MEMS sensor for health and usage monitoring”, 2010 Prognostics and System Health Management Conference, 2010, 1–7 | DOI
[24] C. Shemelya, L. Banuelos-Chacon, A. Melendez, C. Kief, D. Espalin, R. Wicker, G. Krijnen, E. MacDonald, “Multi-functional 3D printed and embedded sensors for satellite qualification structures”, 2015 IEEE SENSORS, 2015, 1–4 | DOI
[25] S. Harte, B. O'Flynn, R. V. Martinez-Catala, E. M. Popovici, “Design and implementation of a miniaturised, low power wireless sensor node,”, 18th European Conference on Circuit Theory and Design, 2007, 894–897 | DOI
[26] J. A. Paradiso, J. Lifton, M. Broxton, “Sensate media-multimodal electronic skins as dense sensor networks”, BT Technology Journal, 22:4 (2004), 32–44 | DOI
[27] J. Lifton, M. Broxton, J. A. Paradiso, “Distributed sensor networks as sensate skin”, SENSORS, IEEE, 2 (2003), 743–747 | DOI
[28] P. Mittendorfer, G. Cheng, “Humanoid multimodal tactile-sensing modules”, IEEE Transactions on robotics, 27:3 (2011), 401–410 | DOI
[29] P. Mittendorfer, E. Yoshida, G. Cheng, “Realizing whole-body tactile interactions with a self-organizing, multi-modal artificial skin on a humanoid robot”, Advanced Robotics, 29:1 (2015), 51–67 | DOI
[30] P. Mittendorfer, G. Cheng, “Integrating discrete force cells into multi-modal artificial skin”, EEEI, 2012, 847–852 | DOI
[31] P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale, “A flexible and robust large scale capacitive tactile system for robots”, IEEE Sensors Journal, 13:10 (2013), 3910–3917 | DOI
[32] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, “Methods and technologies for the implementation of large-scale robot tactile sensors”, IEEE Transactions on Robotics, 27:3 (2011), 389–400 | DOI
[33] G. Tuna, V. C. Gungor, K. Gulez, “An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters”, Ad Hoc Networks, 13 (2014), 54–68 | DOI
[34] A. Molina-Pico, D. Cuesta-Frau, A. Araujo, J. Alejandre, A. Rozas, “Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network”, Journal of Sensors, 2016 | DOI
[35] A. Somov, A. Baranov, A. Savkin, D. Spirjakin, A. Spirjakin, R. Passerone, “Development of wireless sensor network for combustible gas monitoring”, Sensors and Actuators A: Physical, 171:2 (2011), 398–405 | DOI
[36] N. A. A. Husein, A. H. A. Rahman, D. P. Dahnil, “Evaluation of LoRa-based Air Pollution Monitoring System”, Evaluation, 10:7 (2019) | DOI | Zbl
[37] C. Gu, J. A. Rice, C. Li, “A wireless smart sensor network based on multi-function interferometric radar sensors for structural health monitoring”, EEEI, 2012, 33–36 | DOI
[38] P. A. Schmidt, E. Mael, R. P. Wurtz, “A sensor for dynamic tactile information with applications in human-robot interaction and object exploration”, Robotics and Autonomous Systems, 54:12 (2006), 1005–1014 | DOI