Analysis and classification of distributed sensor
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2021), pp. 78-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this analysis is to identify the most promising sensor nodes for the development of types of sensors used in sensor systems of collaborative robots, structures, and arrangement of nodes on the bodies of robots. To achieve this goal, the existing design solutions for sensor assemblies and systems were considered. The paper analyzes and classifies the nodes of distributed sensor systems according to the composition, the method of communication of the nodes used and their location on the robot bodies. Homogeneous or heterogeneous systems containing one of two types of nodes: combined and non-combined, have been identified. It was found that combined nodes are the most promising for development since include several types of sensors and can measure more environmental parameters through a single node. The most used types of sensors, methods of their manufacture, design and properties have been determined. Combined nodes contain the following types of sensors: pressure, proximity, temperature, humidity, gas, illumination, heat flow, corrosion, accelerometer-gyroscope, infrared and laser rangefinders, radar sensors. Among the listed, the most used are pressure, temperature, humidity sensors, inertial measurement units, light sensors, and microphones. The structures of sensor nodes are considered and the nodes most promising for development are identified, as well as the types of sensors used, methods of manufacturing and arrangement of nodes on the bodies of collaborative robots. The disadvantages of the considered systems are highlighted, and a method is proposed to reduce their influence on the power consumption of the system, the computational load, and delays in data transmission.
Keywords: sensor systems, distributed systems; sensors, sensor system nodes
Mots-clés : collaborative robots.
@article{IZKAB_2021_6_a6,
     author = {E. O. Cherskikh and A. I. Saveliev},
     title = {Analysis and classification of distributed sensor},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {78--94},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/}
}
TY  - JOUR
AU  - E. O. Cherskikh
AU  - A. I. Saveliev
TI  - Analysis and classification of distributed sensor
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2021
SP  - 78
EP  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/
LA  - ru
ID  - IZKAB_2021_6_a6
ER  - 
%0 Journal Article
%A E. O. Cherskikh
%A A. I. Saveliev
%T Analysis and classification of distributed sensor
%J News of the Kabardin-Balkar scientific center of RAS
%D 2021
%P 78-94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/
%G ru
%F IZKAB_2021_6_a6
E. O. Cherskikh; A. I. Saveliev. Analysis and classification of distributed sensor. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2021), pp. 78-94. http://geodesic.mathdoc.fr/item/IZKAB_2021_6_a6/

[1] A. Levratti, G. Riggio, C. Fantuzzi, A. De Vuono, C. Secchi, “TIREBOT:”, A collaborative robot for the tire workshop, Robotics and Computer-Integrated Manufacturing, 57, 2019, 129–137 | DOI

[2] C. Byner, B. Matthias, H. Ding, “Dynamic speed and separation monitoring for collaborative robot applications concepts and performance”, Robotics and Computer-Integrated Manufacturing, 58 (2019), 239–252 | DOI

[3] A. Kanazawa, J. Kinugawa, K. Kosuge, “Adaptive motion planning for a collaborative robot based on prediction uncertainty to enhance human safety and work efficiency”, IEEE Transactions on Robotics, 35:4 (2019), 817–832 | DOI

[4] J. Mainprice, D. Berenson, “Human-robot collaborative manipulation planning using early prediction of human motion”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, 299–306 | DOI

[5] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, B. Matthias, “Safety in human-robot collaborative manufacturing environments: Metrics and control”, IEEE Transactions on Automation Science and Engineering, 13:2 (2015), 882–893 | DOI | MR

[6] G. Dumonteil, G. Manfredi, M. Devy, A. Confetti, D. Sidobre, “Reactive planning on a collaborative robot for industrial applications”, 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), v. 2, 2015, 450–457 pp. | Zbl

[7] E. Magrini, F. Flacco, A. De Luca, “Control of generalized contact motion and force in physical human-robot interaction”, 2015 IEEE international conference on robotics and automation (ICRA), 2015, 2298–2304 | DOI

[8] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, “Collaborative manufacturing with physical human-robot interaction”, Robotics and Computer-Integrated Manufacturing, 40 (2016), 1–13 | DOI

[9] S. Tsuji, T. Kohama, “Proximity skin sensor using time-of-flight sensor for human collaborative robot”, IEEE Sensors Journal, 19:14 (2019), 5859–5864 | DOI

[10] P. Francesco, G. G. Paolo, “AURA: An example of collaborative robot for automotive and general industry applications”, Procedia Manufacturing, 11 (2017), 338–345 | DOI

[11] A. Albini, S. Denei, G. Cannata, “Human hand recognition from robotic skin measurements in human-robot physical interactions”, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, 4348–4353 | DOI

[12] G. Cannata, M. Maggiali, G. Metta, G. Sandini, “An embedded artificial skin for humanoid robots”, 2008 IEEE International conference on multisensor fusion and integration for intelligent systems, 2008, 434–438 | DOI

[13] A. Albini, S. Denei, G. Cannata, “Enabling natural human-robot physical interaction using a robotic skin feedback and a prioritized tasks robot control architecture”, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, 99–106 | DOI

[14] S. K. Das, I. Wijayasighe, M. N. Saadatzi, D. O. Popa, “Whole body human-robot collision detection using base-sensor neuroadaptive interaction”, 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018, 278–283 | DOI

[15] T. Yoshikai, M. Hayashi, Y. Ishizaka, H. Fukushima, A. Kadowaki, T. Sagisaka, K. Kobayashi, I. Kumagai, M. Inaba, “Development of robots with soft sensor flesh for achieving close interaction behavior”, Advances in Artificial Intelligence, 2012 | DOI

[16] A. Kadowaki, T. Yoshikai, M. Hayashi, M. Inaba, “Development of soft sensor exterior embedded with multi-axis deformable tactile sensor system”, RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009, 1093–1098 | DOI

[17] I. Kumagai, K. Kobayashi, S. Nozawa, Y. Kakiuchi, T. Yoshikai, K. Okada, M. Inaba, “Development of a full body multi-axis soft tactile sensor suit for life sized humanoid robot and an algorithm to detect contact states”, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 2012, 526–531 | DOI

[18] M. Hautefeuille, B. O-Flynn, F. H. Peters, C. O-Mahony, “Development of a microelectromechanical system (MEMS)-based multisensor platform for environmental monitoring”, Micromachines, 2:4 (2011), 410–430 | DOI

[19] C. L. Roozeboom, J. Y. Sim, D. Wickeraad, B. Dura, W. S. Smith, Hopcrof, M. A., P. G. Hartwell, R. S. Williams, B. L. Pruitt, “Multi-functional integrated sensors for the environment”, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 144–147 | DOI

[20] C. L. Roozeboom, V. A. Hong, C. H. Ahn, E. J. Ng, Y. Yang, B. E. Hill, M. A. Hopcroft, B. L. Pruitt, “Multifunctional integrated sensor in A 2- 2 mm epitaxial sealed chip operating in a wireless sensor node”, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014, 773–776 | DOI

[21] Z. Ni, Yang, C., D. Xu, H. Zhou, W. Zhou, T. Li, B. Xiong, X. Li, “Monolithic compositesensors designed and fabricated by a low-cost single-sideSiN/poly-Si/Al-multi-user processmodule for versatile sensing-network nodes”, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013, 697–700 | DOI

[22] Z. Ni, Yang, C., D. Xu, H. Zhou, W. Zhou, T. Li, B. Xiong, X. Li, “Monolithic CompositePressure+ Acceleration+ Temperature+ Infrared- Sensor Using a Versatile Single-Sided -SiN/Poly-Si/Al- Process-Module”, Sensors, 13:1 (2013), 1085–1101 | DOI

[23] Z. Xu, Koltsov, D., A. Richardson, L. Le, M. Begbie, “Design and simulation of a multifunction MEMS sensor for health and usage monitoring”, 2010 Prognostics and System Health Management Conference, 2010, 1–7 | DOI

[24] C. Shemelya, L. Banuelos-Chacon, A. Melendez, C. Kief, D. Espalin, R. Wicker, G. Krijnen, E. MacDonald, “Multi-functional 3D printed and embedded sensors for satellite qualification structures”, 2015 IEEE SENSORS, 2015, 1–4 | DOI

[25] S. Harte, B. O'Flynn, R. V. Martinez-Catala, E. M. Popovici, “Design and implementation of a miniaturised, low power wireless sensor node,”, 18th European Conference on Circuit Theory and Design, 2007, 894–897 | DOI

[26] J. A. Paradiso, J. Lifton, M. Broxton, “Sensate media-multimodal electronic skins as dense sensor networks”, BT Technology Journal, 22:4 (2004), 32–44 | DOI

[27] J. Lifton, M. Broxton, J. A. Paradiso, “Distributed sensor networks as sensate skin”, SENSORS, IEEE, 2 (2003), 743–747 | DOI

[28] P. Mittendorfer, G. Cheng, “Humanoid multimodal tactile-sensing modules”, IEEE Transactions on robotics, 27:3 (2011), 401–410 | DOI

[29] P. Mittendorfer, E. Yoshida, G. Cheng, “Realizing whole-body tactile interactions with a self-organizing, multi-modal artificial skin on a humanoid robot”, Advanced Robotics, 29:1 (2015), 51–67 | DOI

[30] P. Mittendorfer, G. Cheng, “Integrating discrete force cells into multi-modal artificial skin”, EEEI, 2012, 847–852 | DOI

[31] P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale, “A flexible and robust large scale capacitive tactile system for robots”, IEEE Sensors Journal, 13:10 (2013), 3910–3917 | DOI

[32] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, “Methods and technologies for the implementation of large-scale robot tactile sensors”, IEEE Transactions on Robotics, 27:3 (2011), 389–400 | DOI

[33] G. Tuna, V. C. Gungor, K. Gulez, “An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters”, Ad Hoc Networks, 13 (2014), 54–68 | DOI

[34] A. Molina-Pico, D. Cuesta-Frau, A. Araujo, J. Alejandre, A. Rozas, “Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network”, Journal of Sensors, 2016 | DOI

[35] A. Somov, A. Baranov, A. Savkin, D. Spirjakin, A. Spirjakin, R. Passerone, “Development of wireless sensor network for combustible gas monitoring”, Sensors and Actuators A: Physical, 171:2 (2011), 398–405 | DOI

[36] N. A. A. Husein, A. H. A. Rahman, D. P. Dahnil, “Evaluation of LoRa-based Air Pollution Monitoring System”, Evaluation, 10:7 (2019) | DOI | Zbl

[37] C. Gu, J. A. Rice, C. Li, “A wireless smart sensor network based on multi-function interferometric radar sensors for structural health monitoring”, EEEI, 2012, 33–36 | DOI

[38] P. A. Schmidt, E. Mael, R. P. Wurtz, “A sensor for dynamic tactile information with applications in human-robot interaction and object exploration”, Robotics and Autonomous Systems, 54:12 (2006), 1005–1014 | DOI