Computational model for a differential equation
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2021), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In mathematical models of physical phenomena that use the results of experiments, it is often necessary to solve differential equations. Such problems belong to the class of incorrect mathematical problems. In this paper, to obtain an approximate solution of a first-order differential equation with certain boundary conditions, the corresponding regularizing algorithm is constructed. A method is implemented that consists in constructing a Volterra integral equation of the second kind equivalent to the original differential equation. For its numerical solution, we present a computational algorithm that allows us to obtain stable solutions to an ill-posed problem.
Keywords: differential equation, Volterra integral equation of the second kind, iterative computational scheme, computational algorithm.
@article{IZKAB_2021_4_a0,
     author = {V. I. Naats and E. P. Yartseva and L. V. Andrukhiv},
     title = {Computational model for a differential equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {5--16},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_4_a0/}
}
TY  - JOUR
AU  - V. I. Naats
AU  - E. P. Yartseva
AU  - L. V. Andrukhiv
TI  - Computational model for a differential equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2021
SP  - 5
EP  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2021_4_a0/
LA  - ru
ID  - IZKAB_2021_4_a0
ER  - 
%0 Journal Article
%A V. I. Naats
%A E. P. Yartseva
%A L. V. Andrukhiv
%T Computational model for a differential equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2021
%P 5-16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2021_4_a0/
%G ru
%F IZKAB_2021_4_a0
V. I. Naats; E. P. Yartseva; L. V. Andrukhiv. Computational model for a differential equation. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2021), pp. 5-16. http://geodesic.mathdoc.fr/item/IZKAB_2021_4_a0/