Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2021_3_a2, author = {V. I. Petrenko}, title = {Classification of multi-agent reinforcement}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {32--44}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a2/} }
V. I. Petrenko. Classification of multi-agent reinforcement. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2021), pp. 32-44. http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a2/
[1] V. Mnih et al., “Human-level control through deep reinforcement learning”, Nature, 518:7540 (2015), 529–533
[2] V. I. Petrenko, F. B. Tebueva, S. S. Ryabtsev, M. M. Gurchinsky, I. V. Struchkov, “Consensus achievement method for a robotic swarm about the most frequently feature of an environment”, IOP Conference Series: Materials Science and Engineering, 919:4 (2020)
[3] G. Kov-cs, N. Yussupova, D. Rizvanov, “Resource management simulation using multi-agent approach and semantic constraints”, Pollack Period, 12:1 (2017)
[4] V. Kh. Pshikhopov, M. Yu. Medvedev, “Group motion control of mobile robots in an uncertain environment using unstable modes”, Proceedings of SPIIRAS, 60:5 (2018), 39–63
[5] A. K. Tugengold, E. A. Lukyanov, Intelligent functions and control of autonomous technological mechatronic objects, Don State Technical University, Rostov-on-Don, 2013, 203 pp.
[6] K. V. Mironov, M. U. Pongratz, “Applying neural networks for prediction of flying objects trajectory”, Vestn. UGATU, 2013, no. 6
[7] O. V. Darintsev, A. B. Migranov, “Distributed control system for groups of mobile robots”, Vestnik USATU, 2:76 (2017)
[8] V. I. Petrenko, F. B. Tebueva, M. M. Gurchinsky, S. S. Ryabtsev, “Analysis of information security technologies for multi-agent robotic systems with swarm intelligence”, Science and business development paths, 2020, no. 4 (106), 96–99
[9] N. Yusupova, D. Rizvanov, D. Andrushko, “Cyber-Physical Systems and Reliability Issues”, Proceedings of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support, ITIDS 2020, Atlantis Press, 2020, 133–137
[10] R. Lowe et al., “Multi-agent actor-critic for mixed cooperative-competitive environments”, Advances in Neural Information Processing Systems, 2017 (2017)
[11] H. Wang, Z. Liu, J. Yi, Z. Pu, “Multiagent hierarchical cognition difference policy for multiagent cooperation”, Algorithms, 14:3 (2021) | MR
[12] Silva F. L. Da, C. E.H. Nishida, D. M. Roijers, A. H.R. Costa, “Coordination of Electric Vehicle Charging through Multiagent Reinforcement Learning”, IEEE Trans. Smart Grid, 11:3 (2020) | DOI
[13] J. Cui, Y. Liu, A. Nallanathan, “Multi-Agent Reinforcement Learning-Based Resource Allocation for UAV Networks”, IEEE Trans. Wirel. Commun, 19:2 (2020) | DOI
[14] A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, J. Ashdown, Distributed cooperative spectrum sharing in UAV networks using multi-agent reinforcement learning, 2018, arXiv: 1811.05053
[15] H. Qie et al, “Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning”, IEEE Access, 7 (2019) | DOI
[16] X. Fang et al, “Multi-agent reinforcement learning approach for residential microgrid energy scheduling”, Energies, 13:1 (2019) | DOI
[17] I. A. Pshenokova, Z. A. Sundukov, “Development of a simulation model for predicting the behavior of an intelligent agent based on an invariant of a recursive multi-agent neurocognitive architecture”, News of the Kabardino-Balkarian Scientific Center of the RAS, 2020, no. 6 (98), 80–90
[18] I. A. Pshenokova, O. V. Nagoeva, I. A. Gurtueva, A. A. Airan, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of the RAS, 2020, no. 3 (95), 23–31
[19] P. Hernandez-Leal, B. Kartal, M. E. Taylor, “A survey and critique of multiagent deep reinforcement learning”, Auton. Agent. Multi. Agent. Syst., 33:6 (2019) | DOI | MR
[20] L. Bu-oniu, R. Babu-ka, B. De Schutter, “A comprehensive survey of multiagent reinforcement learning”, IEEE Transactions on Systems, Man and Cybernetics. Part C: Applications and Reviews, 38:2 (2008)
[21] P. Hernandez-Leal, M. Kaisers, T. Baarslag, E. De Cote, A survey of learning in multiagent environments: Dealing with non-stationarity, 2017, arXiv: 1707.09183
[22] K. Zhang, Z. Yang, T. Ba-ar, Multi-agent reinforcement learning: A selective overview of theories and algorithms, 2019, arXiv: 1911.10635
[23] J. Hao, D. Huang, Y. Cai, Leung H. fung, “The dynamics of reinforcement social learning in networked cooperative multiagent systems”, Eng. Appl. Artif. Intell, 58 (2017) | DOI
[24] F. L. Da Silva, A. H. Reali Costa, “A survey on transfer learning for multiagent reinforcement learning systems”, J. Artif. Intell. Res, 64 (2019) | DOI | MR
[25] T. T. Nguyen, N. D. Nguyen, S. Nahavandi, “Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications”, IEEE Trans. Cybern, 50:9 (2020) | DOI | Zbl
[26] Y. Yang et al., Q-value path decomposition for deep multiagent reinforcement learning, 2020, arXiv: 2002.03950
[27] A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, J. Ashdown, “Distributed Cooperative Spectrum Sharing in UAV Networks Using Multi-Agent Reinforcement Learning”, 2019 16th IEEE Annual Consumer Communications and Networking Conference, CCNC 2019
[28] K. Tuyls, G. Weiss, “Multiagent learning: Basics, challenges, and prospects”, AI Magazine, 33:3 (2012) | DOI
[29] L. Matignon, G. J. Laurent, N. Le Fort-Piat, “Independent reinforcement learners in cooperative Markov games: A survey regarding coordination problems”, Knowledge Engineering Review, 27:1 (2012) | DOI | MR
[30] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning Michael”, Thromb. Res., 120:1 (2007)
[31] A. Tampuu et al., “Multiagent cooperation and competition with deep reinforcement learning”, PLoS One, 12:4 (2017) | DOI