Multi-agent search formal model for an
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2021), pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes an approach to the development of intelligent decision-making and control systems based on the hypothesis of the organization of neural activity of the brain in the process of performing cognitive functions. This approach, based on intelligent software agents with a developed cognitive architecture, is able to provide the process of extracting knowledge from an unstructured data stream, generalizing the acquired knowledge and learning, to implement effective methods of synthesizing behavior aimed at solving various problems. A formal model of a multi-agent search for the optimal behavior plan of an intelligent agent based on self-organization of distributed neurocognitive architectures is presented. In particular, the basic principles of situational analysis based on multi-agent neurocognitive architectures are formulated and an algorithm for constructing a cause-and-effect relationship between agents is developed. The conducted simulation showed that on the basis of training neurocognitive architecture by forming new agents-neurons and connections between them, a complex logical function of behavior control (in particular, situational analysis) develops (is formed).
Keywords: multi-agent systems, neurocognitive architecture, decision making, artificial intelligence systems
Mots-clés : intelligent agents.
@article{IZKAB_2021_3_a1,
     author = {Z. V. Nagoev and I. A. Pshenokova and S. A. Kankulov and B. A. Atalikov and A. A. Airan},
     title = {Multi-agent search formal model for an},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {21--31},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a1/}
}
TY  - JOUR
AU  - Z. V. Nagoev
AU  - I. A. Pshenokova
AU  - S. A. Kankulov
AU  - B. A. Atalikov
AU  - A. A. Airan
TI  - Multi-agent search formal model for an
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2021
SP  - 21
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a1/
LA  - ru
ID  - IZKAB_2021_3_a1
ER  - 
%0 Journal Article
%A Z. V. Nagoev
%A I. A. Pshenokova
%A S. A. Kankulov
%A B. A. Atalikov
%A A. A. Airan
%T Multi-agent search formal model for an
%J News of the Kabardin-Balkar scientific center of RAS
%D 2021
%P 21-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a1/
%G ru
%F IZKAB_2021_3_a1
Z. V. Nagoev; I. A. Pshenokova; S. A. Kankulov; B. A. Atalikov; A. A. Airan. Multi-agent search formal model for an. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2021), pp. 21-31. http://geodesic.mathdoc.fr/item/IZKAB_2021_3_a1/

[1] Z. V. Nagoev, K. Ch. Bzhikhatlov, O. V. Nagoeva, Z. A. Sundukov, S. A. Kankulov, “Autonomous formation of a user model based on digital footprint data in the Internet space based on training multi-agent neurocognitive architectures”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2020, no. 6 (98), 52–67

[2] I. M. Sechenov, Reflexes of the brain: An attempt to reduce the mode of origin of mental phenomena to physiological foundations, Priboy, L., 1926, 123 pp.

[3] I. P. Pavlov, Lectures on the work of the cerebral hemispheres, Publishing house of the Academy of Sciences of the USSR, M., 1947, 352 pp.

[4] A. A. Ukhtomsky, Dominant, Peter, SPb., 2002, 448 pp.

[5] P. K. Anokhin, Essays on the physiology of functional systems, Medicine, M., 1975, 447 pp.

[6] I. S. Beritov, Structure and function of the cerebral cortex, Nauka, M., 1969, 532 pp.

[7] N. K. Korsakova, L. I. Moskovichyute, Clinical neuropsychology, M., 2007, 165 pp.

[8] A. R. Luria, Human brain and mental processes, Pedagogy, M., 1970, 496 pp.

[9] V. M. Smirnov, S. M. Budylina, Physiology of sensory systems and higher nervous activity, Academy, M., 2004, 304 pp.

[10] S. Zilbernagl, A. Despopoulos, Visual physiology, Binom, M., 2013, 408 pp.

[11] E. D. Khomskaya, Neuropsychology, 4th edition, Peter, SPb., 2005, 496 pp.

[12] Z. V. Nagoev, Intelligence, or thinking in living and artificial systems, Publishing House KBSC RAS, Nalchik, 2013, 213 pp.

[13] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures”, Cognitive Systems Research Elsevier, 66 (2021), 82–88 | DOI

[14] Z. Nagoev, O. Nagoeva, I. Gurtueva, V. Denisenko, “Multi-agent algorithms for building semantic representations of spatial information in a framework of neurocognitive architecture”, Advances in Intelligent Systems and Computing, 948 (2020), 379–386 | DOI

[15] Z. Nagoev, O. Nagoeva, I. Pshenokova, I. Gurtueva, “Multi-agent Model of Semantics of Simple Extended Sentences Describing Static Scenes”, 4th International Conference Proceedings, Interactive Collaborative Robotics, ICR 2019, Lecture Notes in Artificial Intelligence, 11659, 245–259

[16] I. A. Pshenokova, Z. A. Sundukov, “Development of a simulation model for predicting the behavior of an intelligent agent based on an invariant of a recursive multi-agent neurocognitive architecture”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2020, no. 6 (98), 80–90