Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2021_2_a0, author = {O. L. Boziev}, title = {On an approximate method for solving loaded}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {5--10}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2021_2_a0/} }
O. L. Boziev. On an approximate method for solving loaded. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2021), pp. 5-10. http://geodesic.mathdoc.fr/item/IZKAB_2021_2_a0/
[1] G. I. Laptev, “Quasilinear parabolic equations of the second order with integral coefficients”, Reports of the USSR Academy of Sciences, 293:2 (1987), 306–39 | MR | Zbl
[2] C. Grotta Ragazzo, “Chaos and integrability in a nonlinear wave equation”, Journal of Dynamics and Differential Equations, 6:1 (1994), 227–244 | DOI | MR | Zbl
[3] O. L. Boziev, “Solution of nonlinear hyperbolic equation by an approximate analytical method”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 5–14 | DOI | MR
[4] O. L. Boziev, “Approximation of nonlinear parabolic equations solutions by solutions of associated loaded equations”, Nonlinear World, 2018, no. 4, 3–10 | DOI
[5] J. L. Lions, Some methods for solving nonlinear boundary value problems, Mir, M., 1972, 736 pp.
[6] L. K. Martinson, Yu. I. Malov, Differential Equations of Mathematical Physics, MGTU Publ., M., 2002, 368 pp.