The nonlocal Koshy problem for the Riccati equation
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2020), pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work of a mathematical model, the dynamics of solar activity of 23 and 24 cycles at the stage of rise is investigated. The mathematical model is the Cauchy problem for the Riccati equation with a fractional derivative, a constant value of the order of the fractional derivative, and variable coefficients. The analysis of the initial data is presented in order to highlight the studied area. The solution to this mathematical model is presented numerically using the Newton method. The resulting solution is compared, using a cubic spline, with the experimental data of solar activity of 23 and 24 cycles. Next, using the least square method, the optimal value of the order of the fractional derivative is selected at which the coefficient of determination reaches the maximum value. It is shown that the proposed model is in good agreement with the dynamics of solar activity of 23 and 24 cycles during the rise and allows us to highlight its trend. It has been suggested that the dynamics of solar activity at the elevation stage may have memory effects.
Mots-clés : fractional calculus, Riccati equation.
Keywords: heredity, numerical methods, solar activity
@article{IZKAB_2020_1_a3,
     author = {D. A. Tvyordy},
     title = {The nonlocal {Koshy} problem for the {Riccati} equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {57--62},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a3/}
}
TY  - JOUR
AU  - D. A. Tvyordy
TI  - The nonlocal Koshy problem for the Riccati equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2020
SP  - 57
EP  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a3/
LA  - ru
ID  - IZKAB_2020_1_a3
ER  - 
%0 Journal Article
%A D. A. Tvyordy
%T The nonlocal Koshy problem for the Riccati equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2020
%P 57-62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a3/
%G ru
%F IZKAB_2020_1_a3
D. A. Tvyordy. The nonlocal Koshy problem for the Riccati equation. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2020), pp. 57-62. http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a3/

[1] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[2] A. N. Gerasimov, “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, AN SSSR. Prikladnaya matematika i mekhanika, 12 (1948), 529–539

[3] R. I. Parovik, “Matematicheskaya model shirokogo klassa ostsillyatorov s pamyatyu”, Vestn. YuUrGU. Ser. Matem. Modelirovanie i programmirovanie, 11:2 (2018), 108–122 | MR | Zbl

[4] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[5] D. A. Tverdyi, “Zadacha Koshi dlya uravneniya Rikkati s nepostoyannymi koeffitsientami i uchetom peremennoi stepennoi pamyati”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 3:23 (2018), 148–157 | MR | Zbl

[6] D. A. Tverdyi, “Matematicheskoe modelirovanie nekotorykh logisticheskikh zakonov s pomoschyu ereditarnoi dinamicheskoi sistemy Rikkati”, Materialy XI Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, v 2-kh tomakh, v. 1, Samara, 2019, 348–352

[7] A. V. Buraev, “Nekotorye aspekty matematicheskogo modelirovaniya regionalnykh proyavlenii solnechnoi aktivnosti i ikh svyazi s ekstremalnymi geofizicheskimi protsessami”, Doklady Adygskoi (Cherkesskoi) mezhdunarodnoi akademii nauk, 12:1 (2010), 88–90

[8] R. I. Parovik, Matematicheskoe modelirovanie nelineinykh ereditarnykh ostsillyatorov, KamGU im. Vitusa Beringa, P-Kamchatskii, 2015, 137 pp.

[9] D. A. Tverdyi, “Programma chislennogo rascheta zadachi Koshi dlya uravneniya Rikkati s proizvodnoi drobnogo peremennogo poryadka”, Fundamentalnye issledovaniya, 2017, no. 8 (1), 98–103

[10] Dannye SILSO, , Korolevskaya observatoriya Belgii (ROB), Bryussel, 2013 (accessed 10 oktyabrya 2019 g.) http://www.sidc.be/silso/datafiles#total