The study of non-equilibrium processes
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2020), pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to solving various model problems of studying non-equilibrium processes in the monetary economy by immersion in the differential process as an effective tool of theoretical and practical economics. The problem statement with initial data for the study of non-equilibrium processes in the monetary economy is carried out in the framework of the basic Friedman and Fisher model and equations for the dependence of price on time. Various variants of the method of immersion in a differential process are proposed depending on the value of the adaptation parameters: a regular process, a singular process (Tikhonov process), a mixed-type singular process and a method of immersion in a fractional differential process. After reducing the problem to dimensionless parameters, a nonlinear problem with initial data for a system of partial differential equations of hyperbolic type is obtained. The work considers a singular model problem, a stationary model problem, a model problem for partial differential equations of the first order, and also dimensionless systems of the equation of monetary economy taking into account nonlinear dynamics for the price. The proposed problem statements after immersion in the differential process are solved by standard methods of computational mathematics. The uniqueness of the solution of the model problem, which describes free oscillatory processes in a non-equilibrium system using a special "potential" function, is proved.
Keywords: non-equilibrium process, monetary economy, immersion method into the differential process, regular process, singular process, fractional non-equilibrium process.
@article{IZKAB_2020_1_a1,
     author = {Kh. Kh. Kalazhokov and F. Kh. Uvizheva},
     title = {The study of non-equilibrium processes},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {35--45},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a1/}
}
TY  - JOUR
AU  - Kh. Kh. Kalazhokov
AU  - F. Kh. Uvizheva
TI  - The study of non-equilibrium processes
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2020
SP  - 35
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a1/
LA  - ru
ID  - IZKAB_2020_1_a1
ER  - 
%0 Journal Article
%A Kh. Kh. Kalazhokov
%A F. Kh. Uvizheva
%T The study of non-equilibrium processes
%J News of the Kabardin-Balkar scientific center of RAS
%D 2020
%P 35-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a1/
%G ru
%F IZKAB_2020_1_a1
Kh. Kh. Kalazhokov; F. Kh. Uvizheva. The study of non-equilibrium processes. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2020), pp. 35-45. http://geodesic.mathdoc.fr/item/IZKAB_2020_1_a1/

[1] G. V. Kleiner, “Ekonomiko-matematicheskoe modelirovanie i ekonomicheskaya teoriya”, Ekonomika i matematicheskie metody, 37:3 (2001), 111–126 | Zbl

[2] A. G. Granberg, Dinamicheskie modeli narodnogo khozyaistva, Ekonomika, M., 1985, 240 pp.

[3] R. Solow, “Growth Theory and After”, The American Economic Review, 78 (1988), 307–317

[4] V. E. Nakoryakov, V. G. Gasenko, “Matematicheskaya model planovoi makroekonomiki”, Ekonomika i matematicheskie metody, 38:2 (2002), 1–13

[5] V. E. Nakoryakov, V. G. Gasenko, “Kineticheskaya model inflyatsii”, Ekonomika i matematicheskie metody, 40:1 (2004), 129–134

[6] V. B. Zang, Sinergeticheskaya ekonomika. Vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir., M., 1999, 335 pp.

[7] V. N. Tobin, “Kompleks makroekonomicheskikh modelei inflyatsii”, Ekonomika i matematicheskie metody, 37:3 (2001), 15–29

[8] V. V. Lebedev, Matematicheskoe modelirovanie sotsialno-ekonomicheskikh protsessov, Izograf, M., 1997, 224 pp.

[9] S. Yu. Malkov, O. I. Davydova, S. E. Bilyuga, “Makroekonomicheskaya proizvodstvennaya funktsiya: empiricheskii mezhstranovyi analiz”, Analiz i modelirovanie mirovoi i stranovoi dinamiki: ekonomicheskie i politicheskie protsessy, 2016, 7–26

[10] V. E. Nakoryakov, V. G. Gasenko, “Uravneniya makroekonomiki v chastnykh proizvodnykh”, Ekonomika i matematicheskie metody, 44:3 (2008), 79–91

[11] M. Friedman, A. J. Schwartz, A Monetary History of the United States 1867–1960, Princeton University Press, N. Y., 1963, 888 pp. | MR

[12] M. Friedman, A. J. Schwartz, Monetary Trends in the United States and the United Kingdom: Their Relation to Income, Prices and Interest Rates 1876-1975, University of Chicago Press, Chicago, 1982, 3–12

[13] R. Dornbusch, S. Fisher, “Stopping Hyperinflations: Past and Present”, Weltwirtscha-ftliches Archive, 122 (1986), 1–47 | DOI

[14] Menkyu N. G., Makroekonomika, Izdatelstvo MGU, M., 1994, 736 pp.

[15] N. N. Moiseev, Matematicheskie zadachi sistemnogo analiza, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1981, 488 pp.

[16] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Izdanie 2-e, M., 1950, 434 pp. | MR

[17] A. N. Tikhonov, “Sistemy differentsialnykh uravnenii soderzhaschie malye parametry pri proizvodnykh”, Matematicheskii sbornik, 31(73) (1952), 575–586 | Zbl

[18] A. B. Vasileva, N. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 172 pp.

[19] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[20] S. A. Kaschenko, “Asimptoticheskie zakony raspredelenii sobstvennykh znachenii periodicheskoi i antiperiodicheskoi kraevykh zadach dlya differentsialnykh uravnenii vtorogo poryadka”, Modelirovanie i analiz informatsionnykh sistem, 24:1 (2017), 13–30 | MR