Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2019_6_a9, author = {I. A. Pshenokova and N. A. Chechenova and L. B. Kokova}, title = {Algorithm for modeling the cognitive function of the emotional assessment of situations based on the training of multi-agent neurocognitive architectures}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {75--81}, publisher = {mathdoc}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a9/} }
TY - JOUR AU - I. A. Pshenokova AU - N. A. Chechenova AU - L. B. Kokova TI - Algorithm for modeling the cognitive function of the emotional assessment of situations based on the training of multi-agent neurocognitive architectures JO - News of the Kabardin-Balkar scientific center of RAS PY - 2019 SP - 75 EP - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a9/ LA - ru ID - IZKAB_2019_6_a9 ER -
%0 Journal Article %A I. A. Pshenokova %A N. A. Chechenova %A L. B. Kokova %T Algorithm for modeling the cognitive function of the emotional assessment of situations based on the training of multi-agent neurocognitive architectures %J News of the Kabardin-Balkar scientific center of RAS %D 2019 %P 75-81 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a9/ %G ru %F IZKAB_2019_6_a9
I. A. Pshenokova; N. A. Chechenova; L. B. Kokova. Algorithm for modeling the cognitive function of the emotional assessment of situations based on the training of multi-agent neurocognitive architectures. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2019), pp. 75-81. http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a9/
[1] L. F. Koziol, D. E. Budding, Subcortical Structures and Cognition. Implications for Neuro-psychological Assessment, Springer, 2009
[2] Yu. I. Alexandrov, Fundamentals of Psychophysiology, InfraM, M., 1998
[3] T. W. Deacon, The Symbolic Species: The Co-Evolution of Language and the Brain, Norton, N.Y., 1997
[4] S. A. Shumsky, “Modeling the process of language learning”, Transactions conf «Nonlinear dynamics in cognitive research», Novgorod, 2013, 202–203
[5] V. L. Bianki, “Parallel and sequential information processing in animals as a function of different hemispheres”, Neuroscience and Behavioral Physiology, 14:6 (1984), 497–501 | DOI
[6] E. Goldberg, The Paradox of Wisdom, URSS, M., 2005, 380 pp. | MR
[7] D. Eagleman, Brain: Your personal story, translate Yu. Goldberg, 2016, 270 pp.
[8] A. S. Shamis, Ways of modeling thinking, KomKniga, M., 2006, 224 pp.
[9] V. G. Yakhno, Problems on the way of designing a simulator of live research, N. Novgorod, 2011, 246–249
[10] A. Samsonovich, “Emotional biologically inspired cognitive architecture”, Biologically Inspired Cognitive Architectures, 6 (2013), 109–125 | DOI
[11] M. I. Rabinovich, M. K. Muesinglu, “Nonlinear dynamics of the brain: emotions and intellectual activity”, UFN, 180, 371–387
[12] D. S. Chernavsky, Synergetics and Information: A Dynamic Information Theory, URSS, M., 2004, 287 pp.
[13] O. D. Chernavskaya, D. S. Chernavskii, V. P. Karp, A. P. Nikitin, D. S. Shchepetov, “An architecture of thinking system within the Dynamical Theory of Information”, Biologically Inspired Cognitive Architecture (BICA), 6 (2013), 147–158 | DOI
[14] Z. V. Nagoev, Intellect, or thinking in living and artificial systems, Publishing House KBNTS RAS, Nalchik, 2013, 211 pp.
[15] Z. V. Nagoev, “Multiagent recursive cognitive architecture”, Biologically Inspired Cognitive Architectures 2012, Proceedings of the third annual meeting of the BICA Society, Advances in Intelligent Systems and Computing, 196, Springer, 2012, 247–248 | DOI
[16] Zalimkhan Nagoev, Olga Nagoeva, Inna Pshenokova, Irina Gurtueva, “Multi-agent Model of Semantics of Simple Extended Sentences Describing Static Scenes”, Interactive Collaborative Robotics, Proceedings 4th International Conference ICR 2019, Lecture Notes in Artificial Intelligence, 11659, 245–259
[17] Zalimkhan Nagoev, Inna Pshenokova, Irina Gurtueva, Kantemir Bzhikhatlov, “A Simulation Model for the Cognitive Function of Static Objects Recognition Based on Machine-Learning Multi-agent Architectures”, Biologically Inspired Cognitive Architectures 2019, Proceedings of the Tenth Annual Meeting of the BICA Society, Advances in Intelligent Systems and Computing, 948, 370–379