Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2019_6_a8, author = {L. A. Lyutikova and M. A. Shogenov}, title = {Outliers detection method for data based on multi-valued predicate logic}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {67--74}, publisher = {mathdoc}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a8/} }
TY - JOUR AU - L. A. Lyutikova AU - M. A. Shogenov TI - Outliers detection method for data based on multi-valued predicate logic JO - News of the Kabardin-Balkar scientific center of RAS PY - 2019 SP - 67 EP - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a8/ LA - ru ID - IZKAB_2019_6_a8 ER -
L. A. Lyutikova; M. A. Shogenov. Outliers detection method for data based on multi-valued predicate logic. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2019), pp. 67-74. http://geodesic.mathdoc.fr/item/IZKAB_2019_6_a8/
[1] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka GrabskaBarwinska, Sergio G mez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou et al., “Hybrid computing using a neural network with dynamic external memory”, Nature, 538:7626 (2016), 471–476 | DOI
[2] Ashley I. Naimi, B. Laura, “Balzer Stacked generalization: an introduction to super learning”, European Journal of Epidemiology, 33 (2018), 459–464 | DOI
[3] Fan Yang Zhilin Yang William W. Cohen, “Differentiable Learning of Logical Rules for Knowledge Base Reasoning”, Advances in Neural Information Processing Systems, 2017, December (2017), 2320–2329
[4] Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2012, 396 pp. | MR | Zbl
[5] “Rahman Akhlaqur, Tasnim Sumaira”, International Journal of Computer Trends and Technology, 10:1 (2014), 31–35 | DOI | Zbl
[6] L. Serafini, A. A. Garcez, Logic tensor networks: Deep learning and logical reasoning from data and knowledge, arXiv: 1606.04422
[7] Z. M. Shibzukhov, “Correct Aggregation Operations with Algorithms”, Pattern Recognition and Image Analysis, 24:3 (2014), 377–382 | DOI
[8] Shibzukhov, Z. M., “On the principle of empirical risk minimization based on averaging ag-gregation functions”, Doklady Mathematics, 96:2 (2017), 494–497 | DOI | MR | Zbl
[9] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric Xing, “Harnessing Deep Neural Networks with Logic Rules”, Computer Science Learning, 2016, 2410–2420, arXiv: 1603.06318
[10] Dyukova E.V., Zhuravlev Yu.I., Prokof'ev P.A., “Methods for increasing the efficiency of logical correctors”, Machine Learning and Data Analysis, 1:11 (2015), 1555–1583
[11] Yu. I. Zhuravlev, “On the algebraic approach to solving recognition or classification problems”, Problems of Cybernetics, 33 (1978), 5–68 | Zbl
[12] L. A. Lyutikova, E. V. Shmatova, “Analysis and synthesis of pattern recognition algo-rithms using variablevalued logic”, Information Technologies, 22:4 (2016), 292–297