Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2019_3_a2, author = {I. A. Pshenokova}, title = {Modern state of research in the theory of targeted collective behavior of intellectual robots group}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {23--30}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/} }
TY - JOUR AU - I. A. Pshenokova TI - Modern state of research in the theory of targeted collective behavior of intellectual robots group JO - News of the Kabardin-Balkar scientific center of RAS PY - 2019 SP - 23 EP - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/ LA - ru ID - IZKAB_2019_3_a2 ER -
%0 Journal Article %A I. A. Pshenokova %T Modern state of research in the theory of targeted collective behavior of intellectual robots group %J News of the Kabardin-Balkar scientific center of RAS %D 2019 %P 23-30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/ %G ru %F IZKAB_2019_3_a2
I. A. Pshenokova. Modern state of research in the theory of targeted collective behavior of intellectual robots group. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2019), pp. 23-30. http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/
[1] G. S. Pospelov, Iskusstvennyy intellekt osnova novoy informatsionnoy tekhnologii [Artificial intelligence the basis of new information technology], Science, M., 1988, 168 pp.
[2] I. A. Kalyaev, A. R. Gaiduk, S. G. Kapustyan, Metody i modeli kollektivnogo upravleniya v gruppakh robotov [Methods and models of collective management in groups of robots], FIZMATLIT, M., 2009, 280 pp.
[3] M. L. Tsetlin, Issledovaniya po teorii avtomatov i modelirovaniyu biologicheskikh sistem [Research on automata theory and modeling of biological systems], Science, M., 1969, 316 pp.
[4] J. Y. Donnart, J. A. Meyer, “Learning reactive and planning rules in a motivationally autono-mous animat” (Part B: Cybernetics), IEEE Transactions on Systems, Man, and Cybernetics., 26:3 (1996), 381–395 | DOI
[5] S. W. Wilson, “The animat path to AI”, From Animals to Animats, Proceedings of The First International Conference on Simulation of Adaptive Behavior (J.-A. Meyer and S.W. Wilson, eds.), The MIT Press/Bradford Books, Cambridge, 1991, 15–21
[6] Gerald M. Edelman, Neural Darwinism. The Theory of Neuronal Group Selection., Oxford University Press, 1990, 371 pp.
[7] “R. Brooks”, Cambrian Intelligence. The Early History of the New AI., 1999, The MIT Press: Cambridge, Massachusetts, London, England
[8] A. J. Doupe, P. K. Kuhl, “Birdsong and human speech: common themes and mechanisms”, Annual Reviews of Neuroscience, 1999, no. 22, 567–631 | DOI
[9] G. Edelman, G. Tononi, Consciousness, Penguin Press, 2000
[10] Pfeifer Rolf, Designing Intelligence. Why Brains Aren't Enough. Anthology, 2011, 106 pp.
[11] S. Nolfi, D. Floreano, Evolutionary Robotics. The Biology, Intelligence and Technology of Self-Organizing Machines, The MIT Press: Cambridge, Massachusetts, London, England, 2003
[12] F. Broz, C. L. Nehaniv, T. Belpaeme, A. Bisio, K. Dautenhahn, L. Fadiga, other, “The ITALK project: A developmental robotics approach to the study of individual, social, and lin-guistic learning”, Topics in cognitive science, no. 6 (3), 534–544
[13] V. G. Red'ko, Anokhin K. V. et all, “Project «Animat Brain»?: Designing the animat control system on the basis of the functional systems theory”, Anticipatory Behavior in Adaptive Learning Systems: From Brains to Indi-vidual and Social Behavior., In: M.V. Butz, O. Sigaud, G. Pezzulo, G. Baldassarre (LNAI 4520, Berlin), Springer Verlag, Heidelberg, 2007, 94–107 | DOI
[14] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot” (RA-2), IEEE J. of Robotics and Automation, 1986, 14–23 | DOI
[15] Ed. G. Weiss, Multi-agent Systems–A Modern Approach to Distributed Artificial Intelligence, MIT Press, Boston, 1999, 610 pp.
[16] N. Jennings, K. Sycara, M. Wooldridge, “A Roadmap of Agent Research and Development”, Intern. J. Autonomous Agents and Multi-agent Systems, 1998, no. 1, 7–38, Kluwer Academic Publishers | DOI
[17] G. Rzevski, P. Skobelev, A. Zhilyaev et al, “Customization of Multi-Agent Systems for Adaptive Resource Management with the Use of Domain Ontologies”, International Journal of Economics and Statistics, 6 (2018), 112–124
[18] V. I. Gorodetsky, “Povedencheskiye modeli kiber-fizicheskikh sistem i gruppovoye uprav-leniye: osnovnyye ponyatiya [Behavioral models of cyber-physical systems and group manage-ment: basic concepts]”, Izvestiya YUFU. Tekhnicheskiye nauki [Izvestia SFU. Technical sci-ence], 2019, no. 1, 133–152
[19] Y. Fischer, “On Situation Modeling and Recognition”, Vision and Fusion Laboratory, Technical Report IES-2009-14, Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthromatics (Eds J. Beyerer, M. Huber), Kit Scientific Publishing, Karlsruhe, Germany, 2009, 203–215
[20] M. R. Endsley, “Towards a theory of Situation Awareness in Dynamic Systems”, Human Factors, 37 (1995), 32–64 | DOI
[21] J. Bongard, V. Zykov, H. Lipson, “Resilient machines through continuous self-modeling”, Science, 314 (2006), 1118–1121 | DOI
[22] K. Sims, Evolving virtual creatures, Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'94), 1994, 15–22 pp.
[23] H. Lipson, J. B. Pollack, “Automatic design and manufacture of robotic lifeforms”, Nature, 406 (2000), 974–978 | DOI
[24] M. Komosinski, “The framsticks system: versatile simulator of 3D agents and their evolution”, Kybernetes, 32 (2003), 156–173 | DOI
[25] E. De Margerie, J. B. Mouret, S. Doncieux, J. A. Meyer, “Artificial evolution of the mor-phology and kinematics in a flapping-wing mini-UAV”, Bioinspir. Biomim, 2 (2007), 65–82 | DOI
[26] J. C. Bongard, “Innocent until proven guilty: Reducing robot shaping from polynomial to linear time”, IEEE Transactions on Evolutionary Computation, 15(4) (2011), 571–585 | DOI
[27] J. C. Bongard, “The utility of evolving simulated robot morphology increases with task complexity for object manipulation”, Artificial Life, 16(3) (2010), 201–223 | DOI
[28] N. Jakobi, P. Husbands, I. Harvey, “Noise and the reality gap: the use of simulation in evolutionary robotics”, Lect. Notes Comput. Sci, 929 (1995), 704–720 | DOI
[29] O. Miglino, H. H. Lund, S. Nolfi, “Evolving mobile robots in simulated and real envi-ronments”, Artif. Life, 2 (1995), 417–434 | DOI
[30] S. Koos, A. Cully, J. B. Mouret, “Fast damage recovery in robotics with the T-resilience algorithm”, Int. J. Rob. Res, 32 (2013), 1700–1723 | DOI
[31] G. S. Hornby, J. B. Pollack, “Creating high-level components with a generative representation for body-brain evolution”, Artif. Life, 8 (2002), 223–246 | DOI
[32] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. Zagal, H. Lipson, Proc. of the European Conference on Artificial Life (ECAL), MIT Press, 2011
[33] J. B. Mouret, S. Doncieux, “MENNAG: a modular regular and hierarchical encoding for neural-networks based on attribute grammars”, Evol. Intell, 1 (2008), 187–207 | DOI