Modern state of research in the theory of targeted collective behavior of intellectual robots group
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2019), pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper analyzes the existing trends in the theory of targeted collective behavior of a group of robots. The main results in the presented areas with a description of the advantages and disadvantages of research methods are presented. It is proposed to combine the existing theoretical developments of various areas in the theory of group management and decision-making with the aim of building effective computational abstractions, models and mathematical methods of purposeful collective behavior of autonomous robots.
Keywords: collective behavior, intelligent systems, robots, robotic systems, decision-making and control systems.
@article{IZKAB_2019_3_a2,
     author = {I. A. Pshenokova},
     title = {Modern state of research in the theory of targeted collective behavior of intellectual robots group},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {23--30},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/}
}
TY  - JOUR
AU  - I. A. Pshenokova
TI  - Modern state of research in the theory of targeted collective behavior of intellectual robots group
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2019
SP  - 23
EP  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/
LA  - ru
ID  - IZKAB_2019_3_a2
ER  - 
%0 Journal Article
%A I. A. Pshenokova
%T Modern state of research in the theory of targeted collective behavior of intellectual robots group
%J News of the Kabardin-Balkar scientific center of RAS
%D 2019
%P 23-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/
%G ru
%F IZKAB_2019_3_a2
I. A. Pshenokova. Modern state of research in the theory of targeted collective behavior of intellectual robots group. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2019), pp. 23-30. http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a2/

[1] G. S. Pospelov, Iskusstvennyy intellekt osnova novoy informatsionnoy tekhnologii [Artificial intelligence the basis of new information technology], Science, M., 1988, 168 pp.

[2] I. A. Kalyaev, A. R. Gaiduk, S. G. Kapustyan, Metody i modeli kollektivnogo upravleniya v gruppakh robotov [Methods and models of collective management in groups of robots], FIZMATLIT, M., 2009, 280 pp.

[3] M. L. Tsetlin, Issledovaniya po teorii avtomatov i modelirovaniyu biologicheskikh sistem [Research on automata theory and modeling of biological systems], Science, M., 1969, 316 pp.

[4] J. Y. Donnart, J. A. Meyer, “Learning reactive and planning rules in a motivationally autono-mous animat” (Part B: Cybernetics), IEEE Transactions on Systems, Man, and Cybernetics., 26:3 (1996), 381–395 | DOI

[5] S. W. Wilson, “The animat path to AI”, From Animals to Animats, Proceedings of The First International Conference on Simulation of Adaptive Behavior (J.-A. Meyer and S.W. Wilson, eds.), The MIT Press/Bradford Books, Cambridge, 1991, 15–21

[6] Gerald M. Edelman, Neural Darwinism. The Theory of Neuronal Group Selection., Oxford University Press, 1990, 371 pp.

[7] “R. Brooks”, Cambrian Intelligence. The Early History of the New AI., 1999, The MIT Press: Cambridge, Massachusetts, London, England

[8] A. J. Doupe, P. K. Kuhl, “Birdsong and human speech: common themes and mechanisms”, Annual Reviews of Neuroscience, 1999, no. 22, 567–631 | DOI

[9] G. Edelman, G. Tononi, Consciousness, Penguin Press, 2000

[10] Pfeifer Rolf, Designing Intelligence. Why Brains Aren't Enough. Anthology, 2011, 106 pp.

[11] S. Nolfi, D. Floreano, Evolutionary Robotics. The Biology, Intelligence and Technology of Self-Organizing Machines, The MIT Press: Cambridge, Massachusetts, London, England, 2003

[12] F. Broz, C. L. Nehaniv, T. Belpaeme, A. Bisio, K. Dautenhahn, L. Fadiga, other, “The ITALK project: A developmental robotics approach to the study of individual, social, and lin-guistic learning”, Topics in cognitive science, no. 6 (3), 534–544

[13] V. G. Red'ko, Anokhin K. V. et all, “Project «Animat Brain»?: Designing the animat control system on the basis of the functional systems theory”, Anticipatory Behavior in Adaptive Learning Systems: From Brains to Indi-vidual and Social Behavior., In: M.V. Butz, O. Sigaud, G. Pezzulo, G. Baldassarre (LNAI 4520, Berlin), Springer Verlag, Heidelberg, 2007, 94–107 | DOI

[14] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot” (RA-2), IEEE J. of Robotics and Automation, 1986, 14–23 | DOI

[15] Ed. G. Weiss, Multi-agent Systems–A Modern Approach to Distributed Artificial Intelligence, MIT Press, Boston, 1999, 610 pp.

[16] N. Jennings, K. Sycara, M. Wooldridge, “A Roadmap of Agent Research and Development”, Intern. J. Autonomous Agents and Multi-agent Systems, 1998, no. 1, 7–38, Kluwer Academic Publishers | DOI

[17] G. Rzevski, P. Skobelev, A. Zhilyaev et al, “Customization of Multi-Agent Systems for Adaptive Resource Management with the Use of Domain Ontologies”, International Journal of Economics and Statistics, 6 (2018), 112–124

[18] V. I. Gorodetsky, “Povedencheskiye modeli kiber-fizicheskikh sistem i gruppovoye uprav-leniye: osnovnyye ponyatiya [Behavioral models of cyber-physical systems and group manage-ment: basic concepts]”, Izvestiya YUFU. Tekhnicheskiye nauki [Izvestia SFU. Technical sci-ence], 2019, no. 1, 133–152

[19] Y. Fischer, “On Situation Modeling and Recognition”, Vision and Fusion Laboratory, Technical Report IES-2009-14, Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthromatics (Eds J. Beyerer, M. Huber), Kit Scientific Publishing, Karlsruhe, Germany, 2009, 203–215

[20] M. R. Endsley, “Towards a theory of Situation Awareness in Dynamic Systems”, Human Factors, 37 (1995), 32–64 | DOI

[21] J. Bongard, V. Zykov, H. Lipson, “Resilient machines through continuous self-modeling”, Science, 314 (2006), 1118–1121 | DOI

[22] K. Sims, Evolving virtual creatures, Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'94), 1994, 15–22 pp.

[23] H. Lipson, J. B. Pollack, “Automatic design and manufacture of robotic lifeforms”, Nature, 406 (2000), 974–978 | DOI

[24] M. Komosinski, “The framsticks system: versatile simulator of 3D agents and their evolution”, Kybernetes, 32 (2003), 156–173 | DOI

[25] E. De Margerie, J. B. Mouret, S. Doncieux, J. A. Meyer, “Artificial evolution of the mor-phology and kinematics in a flapping-wing mini-UAV”, Bioinspir. Biomim, 2 (2007), 65–82 | DOI

[26] J. C. Bongard, “Innocent until proven guilty: Reducing robot shaping from polynomial to linear time”, IEEE Transactions on Evolutionary Computation, 15(4) (2011), 571–585 | DOI

[27] J. C. Bongard, “The utility of evolving simulated robot morphology increases with task complexity for object manipulation”, Artificial Life, 16(3) (2010), 201–223 | DOI

[28] N. Jakobi, P. Husbands, I. Harvey, “Noise and the reality gap: the use of simulation in evolutionary robotics”, Lect. Notes Comput. Sci, 929 (1995), 704–720 | DOI

[29] O. Miglino, H. H. Lund, S. Nolfi, “Evolving mobile robots in simulated and real envi-ronments”, Artif. Life, 2 (1995), 417–434 | DOI

[30] S. Koos, A. Cully, J. B. Mouret, “Fast damage recovery in robotics with the T-resilience algorithm”, Int. J. Rob. Res, 32 (2013), 1700–1723 | DOI

[31] G. S. Hornby, J. B. Pollack, “Creating high-level components with a generative representation for body-brain evolution”, Artif. Life, 8 (2002), 223–246 | DOI

[32] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. Zagal, H. Lipson, Proc. of the European Conference on Artificial Life (ECAL), MIT Press, 2011

[33] J. B. Mouret, S. Doncieux, “MENNAG: a modular regular and hierarchical encoding for neural-networks based on attribute grammars”, Evol. Intell, 1 (2008), 187–207 | DOI