Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2019_3_a0, author = {Z. V. Nagoev and I. A. Gurtueva}, title = {The basic elements for cognitive model of speech perception mechanism on the base of multi-agent recursive intellect}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {3--14}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a0/} }
TY - JOUR AU - Z. V. Nagoev AU - I. A. Gurtueva TI - The basic elements for cognitive model of speech perception mechanism on the base of multi-agent recursive intellect JO - News of the Kabardin-Balkar scientific center of RAS PY - 2019 SP - 3 EP - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a0/ LA - ru ID - IZKAB_2019_3_a0 ER -
%0 Journal Article %A Z. V. Nagoev %A I. A. Gurtueva %T The basic elements for cognitive model of speech perception mechanism on the base of multi-agent recursive intellect %J News of the Kabardin-Balkar scientific center of RAS %D 2019 %P 3-14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a0/ %G ru %F IZKAB_2019_3_a0
Z. V. Nagoev; I. A. Gurtueva. The basic elements for cognitive model of speech perception mechanism on the base of multi-agent recursive intellect. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IZKAB_2019_3_a0/
[1] O. Abdel-Hamid, A. Mohamed, H. Jiang, G. Penn, “Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition”, Acoust., Speech, Signal Process, Proc. IEEE Int. Conf., 2012, 4277–4280
[2] N. A. Chomsky, “A Review of Skinner?s Verbal Behavior, [Readings in the Psychology of Language]”, Prentice-Hall, Upper Saddle River, New Jersey, 1967, 636 pp.
[3] A. Coates, A. Y. Ng, “Learning feature representations with K-means”, Neural Networks: Tricks of the Trade, 2012, 561–580
[4] W. De Mulder, S. Bethard, M. F. Moens, “A Survey on the Application of Recurrent Neural Networks to Statistical Language Modeling”, Computer Speech and Language, 2015, no. 30 (1), 61–98 | DOI
[5] F. De Saussure, Kurs obshei lingvistiki [Course in General Linguistics], Izdatel'stvo Ural'skogo Universiteta, Yekaterinburg, 1999, 256 pp.
[6] L. Deng, X. Li, IEEE Transactions on Audio, Speech, and Language Processing (21 (5)), 2013
[7] M. S. Gazzaniga, Conversations in the Cognitive Neuroscience, The MIT Press, Cambridge, 1996, 752 pp.
[8] W. Ghai, N. Singh, “Literature Review on Automatic Speech Recognition”, International Journal of Computer Applications, 2012, no. 41 (8), 42–50 | DOI
[9] O. Ghitza, “Auditory nerve representation as a front-end for speech recognition in a noisy environment”, Computer Speech and Language, 1 (1986), 109–130 | DOI
[10] V. Gupta, “A Survey of Natural Language Processing Techniques”, International Journal of Computer Science Engineering Technology, 2014, no. 5 (1), 14–16
[11] P. Haikonen, The Cognitive Approach to Conscious Machines, imprint Academic, Exeter, UK, 2003, 300 pp.
[12] G. Hinton, L. Deng, D. Yu et al., IEEE Signal Process. Mag (29 (6)), 2012 | MR
[13] B. H. Juan, “Speech Recognition in Adverse Environments”, Computer Speech and Language, 5 (1991), 275–294 | DOI
[14] D. Jurafsky, J. Martin, Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition, Prentice Hall, Boston, 2008, 1032 pp.
[15] I. Kotseruba, J. K. Tsotsos, A Review of 40 Years of Cognitive Architecture Research: Core Cognitive Abilities and Practical Applications, 2016, arXiv: abs/1610.08602
[16] I. L. Mazurenko, “Komputrenye sistemy raspoznavaniya rechi [Computer Speech Recognition Systems]”, Intellektualnye sistemy [Intellectual Systems], 3:1-2 (1998), 117–134
[17] M. Minsky, The Society of Mind, Simon and Shuster, New York, 1988, 336 pp.
[18] A. Mohamed, G. Dahl, G. Hinton, IEEE Audio, Speech, Lang. Process (20 (1)), 2012
[19] V. P. Morozov, I. A. Vartanyan, V. I. Galunov, Vospriyatiye Rechi: voprosy funktsional?noi asimmetrii mozga [Speech Perception: Issues of functionalbrain asymmetry], Nauka, Leningrad, 1988, 135 pp.
[20] Z. V. Nagoev, Intellektika ili Myshlenie v zhivych i iskusstvennych sistemach [Intellectics or Thinking in Living and Artificial Systems], Izdatel'stvo KBNC RAN, Nalchik, 2013, 232 pp.
[21] Z. V. Nagoev, O. V. Nagoeva, “Izvlechenie znanii iz mnogomodal'nyh potokov nestrukturirovannyh dannyh na osnove samoorganizatsii mul'tiagentnoi kognitivnoi arhitektury mobil'nogo robota [Knowledge Extraction from Multimodal Streams of Unstructured Data on the Base of Self-Organization of Multi-Agent Cognitive Architecture for Mobile Robot]”, Izvestia KBNC RAN [News of KBSC of RAS], 2015, no. 6 (68), 73–85
[22] Z. V. Nagoev, O. V. Nagoeva, “Zritel'nyi analizator intellektual'nogo robota dlya obrabotki nestrukturirovannyh dannyh na osnove mul'tiagentnoi neirocognitivnoi arhitektury [Visual Analyzer of Intellectual Robot for Unstructured Data Processing on the Base of Multi-agent Neurocognitive Architechture]”, Perspektivnye sistemy izadachi upravleniya [AdvancedSystems and Management Tasks], Materialy vserossiiskoi nauchno-prakticheskoi konferencii [Proceedings of the 12th All-Russia Conference] (Rostov-on-Don), 2017, 457–467
[23] Z. V. Nagoev, V. A. Denisenko, L. A. Lyutikova, “Sistema obucheniya avtonomnogo sel'skohozyaistvennogo robota raspoznavaniyu staticheskih izobrazhenii na osnove multiagentnyh kognitivnyh arhitektur [Learning System of Autonomous Agricultural Robot for Static Images Recognition on the Base of Multi-Agent Cognitive Architectures]”, Ustoichivoie razvitie gornyh territorii [Sustainable Development of Mountain Territories], 2018, no. 2, 289–297
[24] Z. Nagoev, L. Lyutikova, I. Gurtueva, “Model for Automatic Speech Recognition Using Multi-Agent Recursive Cognitive Architecture” (Prague, Chech Republic), Annual International Conference on Biologically Inspired Cognitive Architectures BICA,, 2018, | DOI
[25] A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge, Massachusetts, 1990, 576 pp.
[26] L. R. Rabiner, R. W. Schafer, “Tsifrovaya Obrabotka Rechevyh Signalov [Digital Processing ofSpeech Signals]”, Radio and communications, Moscow, 1981, 496 pp.
[27] R. Reddy, Proceedings of the IEEE (64 (4)), 1976
[28] A. L. Ronzhin, A. A. Karpov, I. A. Kagirov, “Osobennosti distantsionnoi zapisi i obrabotki rechi v avtomatah samoobsluzhivaniya [Peculiarities of Remote Recording and Speech Processing in Self-Service Machines]”, Informatsionno-upravlyayushie sistemy [Information and Control Systems], 2009, no. 5, 32–38
[29] D. H. Schunk, Learning Theories: An Educational Perspective, Pearson Merrill Prentice Hall, Boston, 2011, 576 pp.
[30] B. D. Van Veen, K. M. Buckley, IEEE ASSP Magazine (5 (2)), M., 1988
[31] A. Waibel, K. F. Lee, Readings in Speech Recognition,, Morgan Kaufman, Berlington, 1990, 680 pp.
[32] M. Wooldridge, An Introduction to Multi-Agent Systems, Wiley,Hoboken, 2009, 366 pp.
[33] L. R. Zinder, “Obshaya Fonetika [General Phonetics]”, Vysshaya Shkola, Moscow, 1979, 312 pp.
[34] E. M. ZionGolumbic, N. Ding, S.et al. Bickel, “Mechanisms underlying selective neuronal tracking of attended speech at a «cocktail party»”, Neuron, 77(5) (2013), 980–991 | DOI