The method of building and optimizing cognitive maps for use in information and control systems
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2019), pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the optimal construction of cognitive maps is presented. It consists in optimizing input data, data dimension and cognitive map structure. The optimization problem occurs with large amounts of input data. Also, the data may not be accurate or distorted. Optimization of the data dimension is clustering the input data. The hierarchical agglomerative method is used as a clustering method. Cluster analysis methods allows to break a lot of data into a finite number of homogeneous groups. The data are combined according to similar characteristics or general characteristics. Optimization of the structure of a cognitive map consists in the automatic adjustment of the weights of the influence of concepts on each other by machine learning methods. In this paper, we use the neural network learning method.
Keywords: cognitive map, cluster analysis, neural network, training sample, fuzzy sets.
@article{IZKAB_2019_1_a1,
     author = {R. A. Zhilov},
     title = {The method of building and optimizing cognitive maps for use in information and control systems},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {11--15},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_1_a1/}
}
TY  - JOUR
AU  - R. A. Zhilov
TI  - The method of building and optimizing cognitive maps for use in information and control systems
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2019
SP  - 11
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2019_1_a1/
LA  - ru
ID  - IZKAB_2019_1_a1
ER  - 
%0 Journal Article
%A R. A. Zhilov
%T The method of building and optimizing cognitive maps for use in information and control systems
%J News of the Kabardin-Balkar scientific center of RAS
%D 2019
%P 11-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2019_1_a1/
%G ru
%F IZKAB_2019_1_a1
R. A. Zhilov. The method of building and optimizing cognitive maps for use in information and control systems. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2019), pp. 11-15. http://geodesic.mathdoc.fr/item/IZKAB_2019_1_a1/

[1] Z. K. Avdeeva, C. B. Kovriga, D. I. Makarenko, “Kognitivnoe modelirovanie dlya reshe-niya zadach upravleniya slabostrukturirovannymi sistemami (situatsiyami)”, Upravlenie bolshimi sistemami, 16 (2007), 26–39

[2] A. A. Kulinich, “Kompyuternye sistemy modelirovaniya kognitivnykh kart: podkhody i metody”, Control sciences, 2010, no. 3

[3] B. Kosko, “Fuzzy Cognitive Maps”, International Journal of Man-Machine Studies, 1 (1986), 65–75 | DOI

[4] F. Rozenblatt, Printsipy neirodinamiki (pertseptron i teoriya mekhanizmov moz-ga), Mir, M., 1965, 480 pp.